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 1 Introduction.

 This dissertation documents the research, experimentation, specification and 

design of a system intended to produce a spectrogram of some signal, using a standard 

VGA monitor as the output device. 

The project, especially in the early stages, makes reference to its use in ECG  

('heart monitoring'). While this was the initial context for the project, it is by no means the 

only application.  Other applications may include machinists, engine manufacturers, 

speech therapists,  musical instrument manufacturers, amongst others.

While these are given some consideration, the field of ECG is given greatest attention, this

field is used to derive system requirements, such as sample rate, memory requirements, 

etc.

The research aspect of the project includes a review of  xisting tools to generate a 

spectrogram.  There will also be some review of viability of this (the system designed in 

the project) as a commercial product, agency requirements, etc. Since the project is 

fundamentally an academic\technical one, design will continue even if the findings suggest

that the design is not commercially viable.

The design phase of the project largely runs concurrently with the research and 

experimental aspects. Design is also likely to continue beyond the completion of the 

substantial part of this dissertation, as enhancements and optimizations of the system are 

implemented



2 Definition of terminology 

A number of the terms used in the dissertation title are clarified here. These are given 

here in the order they are presented in the title

2.1 Real Time

  In this context, Real Time refers to the fact that the system is processing an input that 

has no defined end time, and is providing an out put at a rate that matches the input. 

Ideally 'Real Time' implies that there is no delay between input and output, but clearly this 

is not possible. What is taken as the qualification for real time is that any lag or delay in the

system is of no consequence. In this case, of an instrument used by a human operator, if 

any delay is barely perceptible to the user, it may be considered to be real time. 

The context is key to this definition, for example fighter jets may contain real time 

systems, but the suggested limit of 'barely perceptible to user' would seem to be 

inadequate, with it's requirement to modify behaviour rapidly in response to external 

factors.

2.2  FPGA – Field Programmable Gate Array .

 This is the technology that will be used to develop the system. It refers to an 

integrated circuit with a multitude of gates and registers that may be configured to perform

functions defined by the designer. FPGA's are volatile (blank at power on) and typically 

'boot' from a small non volatile memory device that contains the details of the gate and 

register assignments. FPGA's are used as development platforms (prior to migration to 

ASIC) and as components in the final products. FPGA's are not to be confused with 

microcontrollers. While they are usually programmed using what appears to be a fairly 

high level language, this language is hardware definitions, not software instructions. 

Microprocessors  may be implemented on FPGA with an appropriate hardware definition, 

and software written for it. In principle, this would be an acceptable route for this project to

meet the title definition, however, this is not how it will be implemented here. To do so 

would steer the project towards it being heavily software based, and a computing project 

rather than an electronics  one.



2.3 VGA 

 This refers to the ubiquitous monitor used by computers. This is a mature standard, 

common across fairly old CRT monitors, right through to modern LCD monitors. A benefit 

of  using this as the display is that the device itself will not need a dedicated, built in 

display. It was stated that VGA is  a mature standard, and indeed some modern computers

are moving towards a digital (DVI or HDMI ) display interface. However, the presence of 

VGA does seem to remain on  many of the machines, and it is anticipated that it will 

remain so for some time, even if as a 'legacy' feature.

2.4 Spectrogram

This is a display containing information about the frequency content ('spectral 

content') of some given signal. In practice, a spectrogram is a succession of spectra of the 

input signal , presented in such way as to allow indication of the change of frequency 

content over time. This is distinct from a spectrum, which gives the frequency content of a 

snapshot of the input. Spectrogram may be generated and and presented in a number of 

ways, which is covered in greater detail in subsequent sections.

2.5 Display System.

 It may seem a little pedantic to define ' Display System' here, however there is some 

impact on requirements. To describe something as a display system can be seen to 

indicate that it does not imply any analysis features. So while a full blown instrument may 

have some such features (cursors, graticules, screen dump, etc) it is not required to 

implement these here. That does not exclude the possibility that some attempt may be 

made to do so. 



3  Project Status/Executive Summary

For a number of technical and time related issues, it was not feasible to create a complete 

'end to end' spectrogram generation and display system. However, all the substantial 

elements for such a system have been designed, simulated, and tested. Integration of 

these parts was carried out as far as possible. Demonstration of the system was achieved,

albeit with internally generated data for the input, and severely curtailed resolution on the 

output.

Sections 14 and 15 discuss how these limitations  may be remedied, and give some 

indication of what work would be required to complete the system as a workable product. 

It is claimed then that this work contains a functional design that may be used as a 

development platform to progress into a fully operation system.

Commercial viability of the system was evaluated .While no immediate, compelling value 

was seen, it is clearly indicated in sections 5 and 6 that there are markets to explore. The 

system is shown to be a cost effective approach to generating and displaying 

spectrograms.



4  History and general background to ECG

It was indicated in the introduction that a target application for the project would be 

the study of heart monitoring traces. This section provides a general  introduction to that 

field. It is given as background reading only, and does not of itself constitute a part of the 

project.

4.1 Brief History of ECG

ECG Stands for Electrocardiogram, (or Electrocardiograph). It is a representation of

the activity of the heart derived from the measurement of electrical potentials on the 

patients skin. In the late 18th century, Galvani noted ‘Animal electricity’ where the leg of a 

(recently) dead frog was made to move under the influence of electricity. While this may 

have inspired Mary Shelley (‘Frankenstein’) there was no practical use for that knowledge 

at that time (anyone who has been resuscitated by defibrillator would assert that this is no 

longer the case).   The converse, that movement of muscle creates electrical potentials, 

was not noted until around 100 years later. In the early 1920’s, Willelm Einthoven used a 

sensitive galvanometer to distinguish electrical potentials on the skin, and was able to 

correlate these to the activity of the heart. His work earned him a Nobel Prize. The 

terminology that Einthoven created to define the states of the heart beat are still in use 

today.

4.2 Description of ECG trace

The ECG trace is a recording of electrical activity on the surface of a patients skin. It

cannot  be assumed that the heart is the sole contributor to the potentials measured, 

however, steps are taken to make this the case as far as possible, including the positioning

of the electrodes at specific places, and exhorting the patient to remain as still as possible.

External sources of noise (e.g. mains 50Hz) are taken into consideration. ECG machines 

traditionally used a moving pen to record the trace(s) on a rolling sheet of paper. This has 

been superseded by electronic display equipment, very similar in nature to an 

oscilloscope. Each beat of the heart is not a simple, single pulse, there are several stages 

involved, ventricular and atrial contractions and relaxations, each giving rise to some 

named features. An idealised ‘text book’ trace would resemble fig.1, below.



 

                               Fig 4.2A  Idealised  ECG trace

This is repeated with a period typically in the order of 1Hz  (the heart rate being 

monitored).

To analyse the ECG, a system of naming the parts was devised by Einthoven.  A stylised 

drawing, fig. illustrates the major parts of this system.

Whilst there is no real need to go into clinical detail, these points are referred to in 

an anatomical context for possible future reference. The peak at P is indicative of the 

contraction of the atria of the heart. This is a relatively small muscle mass, so a small peak

would be expected here. The QRS section is treated as a single entity, and is referred to 

as the ‘QRS’ complex. This represents the contraction of the ventricles, the larger muscle 

mass of the heart. The ‘T’ wave is caused by the ventricles relaxing. This relaxation phase 

is often referred to as ‘repolarisation’. The QRS complex has some specific details around 

it’s naming. These names are quite specific to conventional ECG analysis, however they 

may form a useful reference later. If the first deflection is downwards, it is called a Q wave. 

T

Fig 2 Idealised ECG trace, with Eintoven’s annotation

Fig 4.2b



Any deflection upwards is referred to as an R wave, whether or not it is preceded by a Q 

wave. Any deflection below the base line, following an R wave, is referred to as an S wave,

again, regardless of whether or not there was a preceding Q wave.

It should be noted that, in the larger context of this project, the references to the direction 

of displacement may well be irrelevant, as this information is lost by a spectral analysis. It 

should also be noted here that the above is a simplified and idealised view of the ECG. In 

practice, up to twelve electrodes, on different areas of the chest and limbs, may be 

simultaneously monitored and cross compared.

4.3 Application of spectrogram in ECG analysis

Cardiac conditions may be diagnosed by considering the relative amplitudes, 

duration, and qualitative shape of the ECG. The time between features may also be an 

indicator of some conditions. Additionally, any features (peaks, troughs) that do not fit into 

the model may be judged to indicate the need for further examination. 

Transforming the data to the frequency domain allows features that may remain 

hidden under the noise floor to present themselves as frequency content.  A spectrum may

indicate a peak for that frequency. A spectrogram, being a series of spectra taken of the 

signal, each spectra over a fixed time window, permits features to be associated with a 

position in the P-QRS-T ,in a manner that a simple spectral analysis may not. It also 

permits the repetition of a spectral peak to be noted clearly. 

A note of caution – due to the nature of the transformation, there is a trade off 

between the precision of the time (positional) and frequency information. This is because 

each spectrum is composed of samples taken from a discrete and fixed duration. A narrow 

sampling window permits the position of a feature to be known accurately, (it must exist 

within that window) but it’s frequency content to be less precise (one may take a simplistic 

view that this is simply due to their being less samples, but it is deeper than that:- the 

longer the period over which samples are taken, the greater the range of frequencies that 

may be observed). Some comparisons have been made to Heisenberg uncertainty (in that 

frequency content or time of event may be known accurately), however this is perhaps 

fanciful, it is not that the act of observation is affecting the data, as opposed to the manner 

of observation.



5         Other Background Study

5.1 Literature Search

An attempt was made to gauge academic interest in the area of applying 

spectrograms in ECG analysis and cardiology in general, and use of FPGA in spectrogram

creation.

An abundance of papers covering the mathematics of performing FFTs in FPGA's was 

found. While these where useful reading, they were not in themselves a great contribution,

as it was decided during the project to utilise an available FFT engine. No papers were 

found documenting projects very similar to this one, in particular performing the transform 

and displaying it. This is by no means a claim that non exist, just none found by the author.

A further search found 423 articles and papers with containing the key words 'spectrogram'

and 'cardiology', and 117 articles containing 'FPGA' and spectrogram were found. 

Abstracts were read. A selection of some findings are discussed below, where a particular 

relevance was found.

5.1.1  FPGA realization of a CORDIC based FFT processor for biomedical signal 

processing

Ayan Banerjee,Anindya Sundar Dhar, Swapna Banerjee Department of Elecronics and 

Electrical Communication Engineering, Indian Institute of technology, Kharagpur, Feb 

2001

This article discusses a means of efficiently generating FFT of data, in the context 

of biomedical technology. The method described is not directly relevant to the means of 

implementing this project, and does not actually dispay spectrograms. It does contain 

some passing, contextual references to ECG as well actual physiological conditions. This 

may be a valuable article if one were starting from first principles on the transform itself.

5.1.2  Heart energy signature spectrogram for cardiovascular diagnosis

Vladimir Kudriavtsev, Vladimir Polyschuk, and Douglas L Roy ,  BioMedical Engineering 

OnLine. 2007, Vol. 6, p16-37 

At first glance, this article appears to be not relevant, as it is looking at 

cardiophonograms, (audio recordings of the heart) as opposed to electrocardiograms. 

However, since it is looking at broadly similar frequency domain and concerned specific 



heart defects, it was studied. This paper presents a methodology that may be followed in 

characterizing defects by the spectrograms. It was also of interest in that it caused the 

author to consider the possibility of attempting to correlate cardiophonograms and ECGs. 

The project here would be capable of creating spectrograms of both types of data, with 

minimal hardware modifications. Hence this is indicated a further potential application.

 5.1.3 Enhancement of time-frequency properties of ECG for detecting 

micropotentials by wavelet transform based method 

By Hüseyin Tirtom; Mehmet Engin; Erkan Zeki Engin. In Expert Systems With 

Applications. 34(1):746-753

This paper provides a good coverage of the motivation to transform ECG into 

spectrogram format – issues of low amplitude signals are discussed. The paper then 

discusses an end to end system. Reference is made to some interpretation features, in  

that it suggests employing a 'QRS detection block', although it does not give great detail 

on how to achieve this. The paper then continues with a demonstration of how some small 

signals (Late potentials) are identified. 

5.2 Other applications of spectrograms

This section exists as an aside to the main body of the project .  Its purpose is to 

identify other fields in which spectrograms, of similar bandwidths to the ECG, are, or maybe, 

used. This is regardless of how they are generated, and whether or not they are required in 

real time. The purpose of the exercise is to identify other potential markets for this 

technology. The list does not represent an attempt at exhaustive research, it is some 

examples readily found. Some elements of this section are speculative.

5.2.1 Speech Therapy

Speech therapists do already use real time spectrograms in a therapeutic setting. 

The National Centre for Voice and Speech (Utah University, USA) defines two categories of 

spectrogram as useful,  'Wide Band' which it defines as having a bandwidth of 300-500Hz, 

and 'Narrow Band'  which it defines as bandwidth of 45-50Hz. Note that these definitions of  

wide and narrow band are in the context of that field. These band widths are certainly within 

a the area of the ecg, perhaps a little higher, but certainly caputurable with a 1Khz sample 

rate. The use of Spectrograms in speech is to provide a fast, real time, 'bio feedback' path, 

for the patient to modify their speech pattern in response to visual cues, as opposed to 



auditory ones. This may be for a defect or to improve articulation. 

5.2.2 Machinists 'chatter detector'

Machinists, ie persons operating rotary mechanical cutting machines (where either 

the work or the tool is is rotated) may wish to optimize cutting speed by setting the speed as 

close to, or above, the point at which chatter occurs. Chatter is vibration in the tool and work,

and is a function of the speed, tool configuration ('number of teeth') and feed (advance rate). 

The vibration can be damaging to the tool and the work, potentially catastrophic. Machinists 

have traditionally done this to some extent 'by ear', an art rather than a procedure. This 

would require them to dispense with ear defenders, a potential cause of harm. A 'chatter 

detector' would permit an optimum cutting rate to be set without having to go through a 

chatter region. In 2001, an algorithm devised by Prof Ridgeway of Sheffield University was 

implemented in a DSP device. The author had the privilege of contributing (as a 

subcontractor, GSPK Design, Knaresborough) some part of the user interface to a prototype 

of this device. At the time, it was intended to be a hand held device with a minimal user 

interface. This did not directly output any spectral information, it was processed internally, 

and directed the user to settings. It is suggested that there may be an application for live, 

real time spectrograms in the optimization of tooling speeds, in a dynamic manner, the 

operator being able to experiment 'live' with the machine settings.

5.2.3 Seismology

The United States Geological Survey (USGS) provides a constant feed of 

spectrograms derived from  data from seismology sites around the US. It describes the 

relevant vibrations as being in the region of 0 – 10 Hz, which is very comfortably within the 

domain of this FPGA system. The USGS uses these to monitor and locate earthquakes in 

the US and around the world. There is ongoing research as to how to apply then information.

This is very much a real time application, as it is now possible to warn ahead (electronically) 

that a shock wave is approaching. This may only provide minutes or seconds notice, but 

may be sufficient to (e.g.) shut down a gas supply or reduce risks where possible.  Arguably, 

by reducing the cost and power supply requirements of  the monitoring equipment, the 

quantity and quality of data could be improved. 



  6 Feasibility

  6.1 Interview summary with Dr Kendall (GP)

An opportunity arose to interview a practicing GP . This was intended as a 

qualitative exercise. As well as being a GP, Dr Kendall is engaged with modern technology, 

for example he demonstrated an I-phone app that can take a pulse. Additionally, while not a 

cardiology specialist, he was one of the proof readers of Hampton's work 'Introduction to 

ECG.' The interview was not especially structured, and was conducted by a series of e-mails

and conversations. 

Ahead of the interview, Dr Kendall was given a very short introductory text on what 

spectrograms are. It is not known if this was read, but the answers do indicate sufficient 

appreciation to disregard this as a concern. The following text, in italics, is a compilation of 

answers to direct questions, plus some free-range comments of his own. Typographical 

errors have been corrected, but otherwise nothing has been changed. Dr Kendall often used

the phrase 'in GP land '. This was clarified to mean 'in a typical General Practitioners 

surgery'.

….

 I'll give you a snapshot of how we (GP’s) use ECG’s and their existing limitations as well as 

the trends ... secondary care (Hospitals) hopefully as objectively as possible ..- other 

GPs/Drs will have other views)....

 

….Modern day ECG machines are vastly superior to the old lumbering machines of 20years 

ago when I was training.

They are all small (or at least, small ones are available) and portable and can be powered 

by battery and mains. I'm sure you can probably get them to plug in to an iphone now - they 

certainly can seamlessly integrate in to clinical computer systems in GP land.

Most modern ECG machines (circa 2005+ ... have some degree of interpretation function 

built in...they print it (or export it to a PC) and then interpret it. IE. they make a judgment 

whether it is normal, abnormal and then define the abnormalities - usually fairly well - ….

Most GP surgeries will have an ECG machine already and be quite comfortable with its use 

and limitations. ..

GP’s primarily use ECG’s to diagnose rhythm problems ..in patients - essentially we use 

them to determine if the p waves are regular/irregular. Having a higher definition on the 

structure of the p wave would add nothing to this basic use of an ECG ….. The basic 

waveforms produced by the ECG are more than adequate to diagnose a raft of rhythm and 

conduction type problems .. ("Left Ventricular Hypertrophy" for instance)....



Most Chest Pain ( is this a heart attack?) patients would be sent to hospital …. so that 

diagnostic use is falling out of favour.

We actually use the local hospital service exclusively for ECG’s now - they provide a same 

day service to us with interpretation.

There has been a real shift in secondary care practice in the last 10+ years. ECG’s seem to 

play far less of a role in diagnosis now than they used to do - and seem to be used as a 

screening tool - other technologies are then employed to diagnose problems (Stress tests, 

Myoview scans, MRI Angiograms, Echocardiograms for instance). The need to use an ECG 

to get really clever and diagnose minutiae has passed, ..

..My first thought with this is 'What problem do I currently have with ECGs/cardiology that 

having a new / higher definition way of interpreting an ECG will fix?".

My answer would be, there isn't one... and let the hospitals get clever with new 

technology......do I feel like a newer ECG approach is worth my time and money to buy in 

to ? No...

….. I just don't think it is an improvement that is needed at the moment (in GP land) as the 

kit we have is fine? I guess it's too 'evolutionary' as a cardiological technique and not 

'revolutionary' enough?

 

The largest market for ECG machines would be GP’s (I'd have thought) - purely by the sheer

number of primary care facilities versus specialist hospital clinics/wards.

…...

Dr Kendall then closed with some supportive comments and a discussion on research ethics

where patients are involved.

 The indications from Dr Kendall were that in the largest (by volume) market for ECG's there 

appears to be no real demand for such a system. The suggestion  ” too  'evolutionary' as a 

cardiological technique and not 'revolutionary' enough? ” perhaps sums it up well. There is a 

certain inertia, particularly at GP level, that would need to be overcome. Without having a 

known problem to solve, it is difficult to achieve this. It is restated, however, that this section 

is presented as qualitative, background information, and is based on the opinion of a single 

practitioner.



6.2     Overview of other existing tools for generating spectrograms

There are a whole host of means of generating and displaying spectrograms. 

Modern spectrum analysers and the higher end of digital oscilloscopes now may provide 

this feature. Software, commercial and open source, exists on numerous platforms, (PC, 

Android, Apple) that claims to be capable of providing real time spectrograms.

Some cases are viewed here. This is by no means an exhaustive search, however it is 

believed that it catches the corner cases of appropriate technology at the time of writing.

6.2.1 Textronix RSA-5000 series  Spectrum Analyser  

Available since January 2013, this is defined as a mid range spectrum analyser. 

This is primarily targeted at RF engineers. Offers 110MHz bandwidth, in 26.5 and 15GHz 

model. This offers a real time spectrogram feature. The specifications clearly outstrip the 

requirements for ECG (Section 8). The price tag may also be problematic, at £32,000.

An example has not been seen, but the author has some familiarity with this type of  

equipment, they are by no means portable or discrete. This item was not included as 

viable alternative to the proposed system, but provided as an indicator of the higher end of

equipment.

6.2.2 GW-Instek  GSP-930

GW Instek  is a brand of  GoodWill Instrument Co, a Taiwanese firm that have been 

in existence since 1975, although are relatively emerging (in the west) at the higher end of 

instrumentation .This is a 3GHz model, somewhat more compact than the Tektronix part, 

above. At 4.5 Kg it is perhaps not quite portable. Again, this far outstrips the requirement. 

At a price of around £3660, it is somewhat more viable on a cost basis.

6.2.3  Texas Instruments  ADS1x98 ECG FE

This is an evaluation board that Texas Instruments make available to evaluate their 

ADS1x98 series of ECG front end amplifiers . This is coupled with a general purpose DSP 

board for demonstration purposes. Adrian Grindon, a field application engineer for Texas 

Instruments, kindly made such a unit available. It ships with software that is capable of 

generating spectrograms, which are claimed to be real time, however they are delivered by



USB to a host computer, introducing some lag. Despite that, it would appear that the 

additional resources to output from the DSP to a VGA monitor would not be too onerous, a

very low end graphics chip set should be able to do this. No firm pricing was available, as 

this was a commercial /engineering sample. Mr Grindon suggested that the evaluation 

board as is would be “a few hundred dollars”  (although given freely to customers). No 

actual BOM cost was available, so this budgetary figure is accepted for discussion.

6.2.4 Spectrum View Plus'  I-os (Apple) platforms.

No device was available to evaluate this product. Its is targeted at audio range signals, 

which would place it very well in the frequency range of interest. The product web page 

shows screen shots which appear quite satisfactory. A customer review seems to suggest 

it functions well, however only one review was visible (at the time of writing). The software 

costs £4.99 .  This of course requires the user to own an IOS device. The input is defined 

as microphone, so some adaptation would be required to the patients electrodes. 

Portability is clearly not an issue, neither is price (assuming prior ownership of hardware).

(Spectrum Plus View may be found at www.oxfordwaveresearch.com    or search on the  

Apple 'App store' )

6.2.5   Wavesurfer  (Personal computer, Windows or Macintosh)

This is a free, open source program that is popular with speech therapists. Again, being 

audio range, is appropriate in terms of frequency domain. It claims to give real time 

spectrograms. As it is computer based, it should be feasible to use a 'line in' rather than a 

microphone, however, some circuitry would still be required, although not as sophisticated 

as the needed in all the other instances. Use of a laptop would make it portable, and 

perhaps in practical usage, more closely resemble the system described by this project. 

( wave surfer may be downloaded from http://www.spectrogramsforspeech.com/tutorials-

2/software-download-2/) 

http://www.oxfordwaveresearch.com/
http://www.spectrogramsforspeech.com/tutorials-2/software-download-2/
http://www.spectrogramsforspeech.com/tutorials-2/software-download-2/


6.2.6  Conclusion

All of the above, with the exception of the Texas Instruments evaluation board, 

would require some additional electronics to interface to the patient electrodes. However 

since this is also the case for the FPGA based system, this tends to be a zero sum 

element of the comparison. What has been omitted is the fact that a real world system  

may be required to monitor and transform multiple channels simultaneously. In the case of 

the spectrum analysers put forward, this would require one machine per channel, clearly 

impractical. In the case of the software, this would be limited by available processing 

power of the platform. The relatively low processing power of the Apple devices is unlikely 

to meet this, however, a powerful personal computer, perhaps supported by additional 

GPU's as co-processors, would have little difficulty in meeting this. This does then of 

course devolve the problem back to specialist hardware and software.

The Texas Instruments offering does seem to be a viable option, although the work 

required to make it truly 'stand alone' is unknown.

 The FPGA solution, as proposed by this project, is assessed. Altera are currently 

offering (at low volume pricing) the EPC20F484C8 for $47 ( £30.35 ) The cost of external 

memory is small compared to this, (Taiwanese spot price at time of writing is $1.53 for 

2GB DDR 3, or approximately  £1.) 

A reasonable estimate of the build cost of the FPGA based system would be 

comfortably below £100. It would be safe to budget for an increase in cost of £50 to add 

per additional channel, so it is claimed that an 8 channel system could easily be built for 

£450.   

This certainly compares favourably with a high end, specialised PC, but perhaps not

so well with a generic 'beige box'  PC. 

It might be observed that Moore's “law” will eventually cause the PC to be more 

cost effective. However, this is moot, as the process used in fabricating FPGA's follow 

similar trends. 

         



   6.3    Feasibility  conclusion and suggested market strategy

There seems to be a conflicted view as to the market demand for the system as a 

product, some academic interest shown in section 4.3, and the other applications indicated 

in Section 5, against the pragmatic view point of a practitioner (section 6.1)

A classic market behavior for new products is of the 'early adopters' paying a higher

price, followed by acceptance in the mass market, as price is seen to reduce, and the 'early 

adopters' evangelize the product. In this case, the early adopters may be the Cardiology 

consultants and specialists, perhaps in private practice or NHS.  The mass market would be 

of course the GP's . The GP's may purchase the items as discretionary purchases, or as 

replacements for old equipment. 

The is another potential marketing strand which may help increase volume of 

production. Section 5 discussed other applications of spectrograms. These are, in the main, 

single channel applications. This may permit a single device to be pitched to multiple 

markets. Since this would be the single channel device, retailing for (around) £250 could well

be in the range for operators to consider these as discretionary purchases, and indeed worth

purchasing to evaluate. So in addition to creating new markets, this may generate sufficient 

sales and revenue to achieve the sort of purchasing volume that may bring pricing of the 

multiple channel device down. 

A further benefit of accessing other application markets would be to provide wider 

acceptance of this type of technology, in a less critical sector,  potentially ' normalizing' the 

use of spectrograms, which may help overcome inertia in medical sectors as there would be 

other case studies to point to.

It is concluded, but with caution, that the FPGA spectrogram system does seem to 

have viable market places, even if not necessarily in the field initially suggested. It is noted 

that there would be significant further and detailed market research to be conducted. There 

is also a considerable amount of engineering work remaining to make this a realisable 

product.



7 High level  design of system

7.1 Power Supply: 

The voltage and current requirements of the system remain unspecified at this 

stage, and will be derived from hardware design decisions. However, as the finished 

product is intended to be in physical contact with people, it will be assumed that the 

system will operate from a low voltage, mains isolated supply, or batteries.  A nominal 

supply of 5V at 1A is given here. This does not include the supply for the VGA monitor, 

which is assumed to have it’s own mains supply. Further issues around power supply are 

addressed in section 7.5, Agency Requirements.

7.2 System I/O 

This is defined by the nature of the system itself, however some values are placed here

Inputs (ECG trace)  – Analogue input, 1V peak to peak, band width limited to 22KHz

     (typical audio system ‘line’ levels.

Outputs                   – VGA data, 640 x 480 pixels. 

7.3 User Interface

There is no need for a sophisticated user interface – the simplest implementation 

would be for the system to create a spectrogram on reset, and continue scrolling the 

display.         

Id Type Function
Reset Push Button Reset whole system, take initial spectrogram
Hold Push Button Freeze the display 
Screen Dump* Push Button Capture the display and send a file via RS232 for

permanent copy offline

*Screen Dump is a complex feature, that is proposed here as something that may be 

desirable in a real product, but is unlikely to be implemented in this project.
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7.4 Outline Architecture Design

Diagram here is a very high level diagram showing the substantial blocks that the system 

is expected to consist of. This is a steering concept, any final design is not forced to 

comply to this initial plan. 

                Fig 7.4  Proposed system structure

7. 5 Agency Requirements

Electronic (and other) products sold within the EU member states must comply to 

some applicable standards, covering safety (Low Voltage Directive)  and electromagnetic 

compatibility (EMC directive).  Identifying, and demonstrating compliance to, the 

appropriate safety and EMC standards permits the product to be marked with the CE logo.

Some products (IT equipment, lighting, power tools, etc) are in categories with clearly 

defined standards to meet. Medical devices have been identified as one such category. 

A specific EEC Council Directive (93/42/EEC)  Article 1, section 2(a) states.

“  ‘medical device’ means any instrument, apparatus, appliance, material, whether used 

alone, or in combination, including the software necessary for it’s proper application 

intended by the manufacturer to be used for human beings for the purpose of:

- diagnosis, prevention, monitoring, treatment or alleviation of disease,

……”

ECG signal



the standard then goes on to name other purposes. It would seem clear that the system 

being designed here, if placed on the open market in the EU (or indeed world-wide, as 

obtaining CE compliance does permit, or certainly ameliorate, entry to many non-EU 

markets) would fall under the scope of this directive.

The full directive is a long and complex document. The essence is that medical devices 

require CE marking, and hence must comply to some set standards. Given that the 

technological scope of medical devices is wide – from the high energy, high voltage 

defibrillator, to an inspection mirror, it is meaningless to repeat the whole documents here. 

Some sections do warrant close attention, as they have specific relevance. The following 

extracts are taken from Sections 10 and 12 of Annexe 1 ‘General Requirements’ of the 

directive (93/42/EEC). The section number and title are quoted, the accompanying text is a

summary of that section.

10  Devices with a measuring function.

Where it is stated that devices with a measuring function are sufficiently accurate and 

stable for the purpose, the limits of the accuracy are to be stated by the manufacturer. 

The measurement, monitoring, and display scale must designed with ergonomic 

principles in mind. The measurement must be made in legal units conforming to 

directive 80/181/EEC

12 Requirements for medical devices connected to or containing and energy source.

In practice, this is product safety, suggesting compliance to the Low Voltage Directive 

or similar is required.. In addition to ensuring that the patient is not at risk of electric 

shock from the device, thermal (heating) and mechanical risks are addressed.  The 

project has been defined as using a low voltage, isolated supply. If this were being 

introduced as a commercial product, it is suggested that either the device is powered 

by batteries, or that an off line converter is bought in from a medical approved source 

as an adaptor. It may still remain that some galvanic isolation is required between the 

user and the VGA monitor. This may feasibly be achieved with an optical or magnetic 

isolation circuit on the VGA data line. For the purpose of this project, it will be assumed 

that the monitor will be a modern LCD based display that is powered by a suitable, 

mains isolated supply, and that the VGA connector has sufficient isolation from the high

voltage that may be used to drive the backlight. The EU directive clearly indicates 



qualitatively what is required for compliance, but does not indicate how compliance is 

proved. A specific standard, IEC/EN 60601 details test requirements that, if met, would 

be accepted. The testing may be carried out in house, or performed by an external test 

house. In fact, many producers use both routes, a lot of pre-compliance work is done in

house, to the point where the producer is confident that it complies. Then passing to an

unbiased test agency gives a degree legal protection against negligence, and 

demonstrates due diligence. 

7.6 Detailed Architectural Design

The architecture of the system was designed using empty VHDL entities. This was 

compiled, and a hierarchical block diagram created using the RTL viewer. This represents 

a top level design of the entire system. This is intended as a starting point for design. It is 

not necessary or indeed even likely, to adhere to this scheme, nor is it compulsory to fulfill 

every aspect of it. It serves as a system diagram by function. Interfaces are shown.

7.6.1 Top level 

Fig 7.1 (next page) Shows the top level of the FPGA.  It shows a simple split 

between the VGA display block, and the Spectrogram generation block.

  The external interfaces are those to the external hardware on the DE1 board.  The VGA 

interface acts as master at this level. The reason for this is because the Spectrogram 

generator writes in to the memory of the VGA interface when it has data, whereas the VGA

interface must read from this memory, and in a manner that complies with the timing 

requirements of the output monitor. A handshaking arrangement between the two has 

been created, whereby the VGA interface indicates to the Spectrogram generator that it is 

ready to accept data

To write data into the VGA interface, it is necessary to set the co-ordinates of the 

display pixel being set, (VGA_ROW, and VGA_COL buses), the value of that pixel 

(VGA_DATA bus) and then strobing the VGA_WRITE line. Note that this will only occur 

while  the VGA interface has VGA_READY asserted.

This ‘Row and Column’ representation should serve better than using direct memory 

address, as the Row will represent a frequency bin (y axis) , and the column represents 

the time window (x axis) this data came from. The data itself is the amplitude of that 

frequency at that time.



The VGA interface is responsible for translating rows and columns into the addresses of 

the memory (RAM) device.

Fig 7.6.1



7.6.2 VGA interface

Fig7.5.2  shows  some detail of the components of the VGA interface. 

The output to the VGA is driven by the block ‘ VGA_MemoryManage’ . This is shown 

interfaced to the external RAM device containing the screen image. The 

VGA_MemoryManage block handles all reads and writes to the external RAM.  A clock 

source , VGA_Clock, drives this VGA_MemoryManage block. The same clock also drives 

another entity, creating the horizontal and vertical sync signals.

Within the VGA interface is a block ‘VGA_Init’ , the initialisation. The purpose of this block 

is to, on system reset, take a screen overlay (axes, labels, etc) from an external flash 

device, and copy this to the VGA_MemoryManage. This block can assume mastery of the 

VGA_MemoryManage for the purpose of initialisation. It should then release the 

VGA_MemoryManage. Note that there are some multiplexers shown, selecting which row, 

column, and data source are presented to the VGA_MemoryManage block, depending on 

the state of the initialisation block.

`



Fig 7.6.2 VGA Interface



7.6.3   Spectrogram Generator

This block is by far the most complex, containing functions for the control of the Audio 

Codec, the mathematical (Currently shown as, but not commited to, FFT) processor, and a

dual port, circular buffer for the codec samples. Fig 7.5.3 shows the interface between 

these three blocks. This is shown in fig 7.3

  The Audio Codec Control entity initialises on reset of the Audio Codec, and then clocks 

out the digitised data when the system is in operation. 

The FFT processor, as well as performing the transform of the data to frequency domain, 

formats this for presentation to the VGA interface.

The dual port buffer ‘SampleStorage’ is clearly shown. It has a ‘write only’ interface, 

whereby the digital data is written in, and a read only interface, used by the FFT to access 

the samples. 

Note that the FFT block is not expanded upon in this section. At present, it consists of a 

vendor supplied piece of IP, and a state machine to control it. It remains to be determined, 

at detail design level, if any additional features (e.g. bit reversal of output) are required. A 

specific feature that may require implementing within, or as pre-processor to, the FFT 

block, is a windowing function. This is a relatively simple arithmetic operation performed on

the sample set to minimise boundary discontinuities that may manifest as false spectral 

content in the output.

  Figures 4,5,6 contain further, internal architecture and interface detail of the components 

of the Spectrogram Generator block.



Fig 7.5.3



7.6.4  Audio Codec 

The only entity shown within here, on fig 7.4, is an I2C master .This is used to 

initialize the Codec (it’s sample rate, data format, etc.) . Some state machine is to be 

created to drive the I2C master to perform the initialisation. The Audio chip used can 

support I2C or SPI, but the DE1 Board has had the codec hard wired to select for I2C. SPI 

is much easier to implement, and it is NOT ruled out at this stage to make the necessary 

hardware modifications to the DE1 board to change this.     

An additional item, not shown, is a shift register and accompanying state machine, 

required to collect the data from the Codec as it is clocked out, and pass this out when a 

complete sample has been assembled.

   



Fig 7.6.4



7.6.5 Sample Buffer

The buffer is a dual port memory controller, readable by the FFT, writeable by the 

Audio codec. This memory controller controls the permissions. Note that it is a FIFO stack 

(circular buffer) and as such does not present an external address bus. It does however 

provide a means to reset the address pointers. There are some minor changes required to 

it’s interfaces, as can be seen on fig 7.5.5, however, it does accurately describe the 

required function.

Fig 7.6.5



 7.6.6   Detail of Sample buffer

Fig 7.5.6, showing the operation of the FIFO address pointers, and some logic that 

automatically increments them when a sample has been written/read. A signal ‘sample 

ready’  is asserted when the register holding the write address is greater than the read 

address register.  This is a simplification (exceptions will occur at rollover) . Also, some 

enhancements to this control system will be required, as there will (may?) be some overlap

from one window (sample block) to the next, requiring the retention of some the samples 

from the end of one window, to form the beginning of the next. As that is a matter of 

detailed implementation, it is out of scope at this point, and the control shown is adequate 

to illustrate the architecture, and the overall manner in which the memory is to be 

controlled.



Fig 7.6.6



7.7 Test Build (Resource Test)

The architecture shown preceding is not of itself a functional design. Certain 

assumptions have been made about the fitness of the selected device and it’s evaluation 

board for this project. A proprietary FFT function was placed in the design, with some 

memory control elements, and built. The build was successful, using approximately 30% of

the device resources. 

8 Derivation of  Hardware requirements for spectrogram capture 

It is expected that ECG data would be presented to the system as an analogue 

voltage. A simplification is made in the context of this project, in that a single pair of 

electrodes (one signal) is considered. This is converted to digital values, and processed 

into the Spectrogram data, for display on a VGA monitor. Treating the Spectrogram 

processor as a ‘black box’, the requirements focused on here are the input and output 

requirements; that is the ADC (input) and VGA driver (output). The key specifications of an 

ADC (in addition to electrical specifications) are bandwidth and sample rate. The display 

(outputs) we are considering here are confined to memory (storage) needs.

8.1 ADC – Bandwidth and sample rate.

A popular introductory work on ECG trace analysis, ‘The ECG made easy’ (John R 

Hampton, 1973), containing standard ECG traces, was studied. Traces are shown on 

squared paper, with time on the X axis, and amplitude (pen deflection) on the Y axis. One 

large square indicates 0.2 s. Each large square is subdivided into five small squares (each

of 40ms). This is the standard paper for ECG work. 

The shortest duration features that could be discerned on these traces were clearly 

contained within 1 small square. Precisely determining the minimum duration (width) of 

these features was not possible, however, it could be claimed that they were not smaller 

than one quarter of a small square, hence it is claimed that the shortest duration will not be

less that 10ms. In other words, the smallest temporal width of any feature is around 10ms. 

This is not to say that the project may not improve on this, but that it is not required to do 

so. Nyquist clearly states that sampling must be taken at a minimum of twice the frequency

of the fastest component of the signal. If we were considering a known, repeating 

waveform such as a sine wave, this would be adequate. However, as studying traces has 



shown, there may be a great deal of underlying irregularity. It is suggested that a sample 

rate of around ten times this smallest feature would give suitable resolution, guaranteeing 

a number of data points on the smallest features. Taking this assumption with the 10ms 

feature duration (which corresponds to a frequency of 100Hz) it would appear safe to 

conclude that a sample rate in the order of 1KHz may suffice. This is an easily achievable 

figure, so a generous margin may be placed on this. It is stated then that the sampling 

frequency must be equal to or greater than 1KHz, but is not required to exceed 10KHz (but

may do so).No upper limit for sampling rate is given, however practical (hardware, 

memory and ADC limitations may come to bear on this).

The practical result of this analysis would that an ADC targeted at audio 

applications would have ample bandwidth and sample rate for this system. 

It is to be noted that these are requirements to analyse ECG as traditionally 

understood, with the properties as defined by the standard paper. There could well be 

benefit in higher sampling rates (e.g. visibility of narrower features). This is beyond the 

scope of this project.

8.2 Display (memory) requirements

In most graphical displays, a memory device holds the image. This memory is 

written to by the system processor, and read from by the display driver hardware. The 

amount and speed requirements are driven by colour resolution (bit width), the size of the 

display, and the refresh rate. It will not be attempted to set precise values to these at this 

stage, however an indication of the values is derived here.

The default resolution supported by VGA monitors is 640x480 pixels.  Suggesting a 

generous 24 bit (eight bits each of red, green, and blue) colour scheme, the amount of 

memory needed would be 7372800 bits, This may be nominally set at 1Mbyte, allowing a 

generous margin. The actual bit-width of the device, and indeed if it is to be a single 

device, is determined by the method of encoding any colour scheme.

It is worth considering the effect of colour depth and resolution, for example an eight

bit greyscale would require 307,200 Bytes. A twelve bit colour scheme would require 

460,800 Bytes. The utilisation of the display area is not defined, and the data may be 

‘smeared’ across pixels (e.g. the spectrogram may only require 256 frequency bins). The 

nominal memory requirement for the display is therefore expected to be between 256K 

and 512 K bytes, however, the proposed 1Mbyte nominal is taken forward for first iteration.



9 Design tool selection

Having some requirements defined, a choice is to be made as to how to proceed 

with design activity. 

9.1 Hardware platform selection

All FPGA vendors make evaluation boards available for the development of 

systems. These generally have a selection of  features – interfaces, memories, etc, as

found in many digital systems. Of particular interest is the DE1 platform, provided by Altera

for the evaluation of their ‘Cyclone’ family. This development board has :

a) Several memory devices, in excess of the estimates proposed in earlier sections,

b) An audio codec chip, containing an ADC suitable for audio  applications

c) A 15 pin VGA socket, with a simple resistor ladder DAC for each VGA colour 

d) A substantial FPGA device

e) A selection of switches, buttons, and LEDs

 This was to be had at a subsidized price in the region of £90, which is a fraction of the 

cost of any comparable boards from Xlinx or Atmel. Such a board was available. 

Application notes for the device on the DE1 Board showed applications of comparable or 

greater complexity than this project. 

9.2 Software design tool selection

The DE1 development board selected above ships with a software suite ‘Quartus 

II’ .This is a free compiler, supporting graphical, Verilog, and VHDL design entry. Graphical 

entry was quickly discounted as inappropriate for the level of complexity of this project. 

VHDL was selected over Verilog as the means of entering the design. This was largely a 

personal preference as opposed to any technical merit. 



10 Evaluation of mathematical method of generating spectrogram

This section is concerned with means by which the spectrogram is calculated.

It is intended as an introductory text, not a definitive treatise, its purpose to evaluate and 

describe the methods described, and give an insight into them.

While this is described here as an evaluation, while a pragmatic decision has been made 

ahead of development of the demonstrator as to which method will be employed,  this 

section is to evidence that options have been studied

Three methods are named here, and each is given a brief overview, and then examined in 

greater detail

4.1 Fourier transforms:

 The time domain signal is processed, in blocks of fixed length, using a form of the 

Fast Fourier Transform known as the STFT (Short Time FFT).  Considering the proposed 

sample rate in the order of 1KHz, 512 samples per window seems reasonable. The output 

of the STFT may consist of either 256  or 512 samples (depending on how the FFT is 

implemented), these are assumed to require storing. This would indicate a need for around

2K bytes of memory (two banks  of 512 x 16 bits) 

4.2 Banks of filters

An array of digital band-pass filters could be created, where each filter provides the value 

for a given frequency 'bin' . Each filter is a distinct entity, and frequency bins may be 

selected arbitrarily (within certain design constraints). Digital filters are divided into two 

main categories, non recursive and recursive. Non recursive filters rely solely on previous 

(and current ) input, whereas recursive employs feedback, in that it will take previous 

outputs among its inputs. Other than that, mathematically, they are similar to implement, 

the output being the sum of the individually weighted inputs. A piece of software was 

'Sincfilter.exe' was written to qualitatively evaluate a specific type of filter (the windowed 

sinc filter) This is entirely the author’s own work, and is  available at 

www.peterbrewster.co.uk . This is given freely for anyone to reproduce, modify, etc.  A zip file

with build script and some instructions for use will be available with electronic copies of 

this work. In addition to the Sincfilter application, a piece of software called 'fiview'  (Jim 

Peters, 1997-2007)  was used to evaluate other filter schemes. Fiview is not distrubuted 

here, but can (at the time of writing) be found at   http://uazu.net/fiview/ 

http://uazu.net/fiview/
http://www.peterbrewster.co.uk/


10.3 Fourier Transform

The Fourier Transform is a well established means of extracting spectral data. The 

term 'transform' refers to the fact that the function takes the input data and transforms it 

from the time domain to the frequency domain. There is no loss of information, and the 

process is reversible with the inverse Fourier transform. This is used widely in many areas 

of science , engineering, and telecommunications, amongst others. The Fourier transform 

in its most pure form is a complex integral of the form 

S  f = ∫
−∞

∞
s t e− j2 ft

As that appears, it is not useful in digital system, the transform has to be computed 

numerically. This may be achieved with the Discrete Fourier Transform,  (DFT).

This is usually done using an algorithm called the Fast Fourier Transform (FFT). The FFT 

is a computationally optimised implementation of the DFT. 

Work has recently been completed on a further optimisation of the FFT, the Sparse 

Fourier Transform, (SFT or sFFT). While this gives further computational optimisations, it 

does so by analysing the number of frequencies present, and discarding some. It would 

take some considerable study to determine if it would even be an appropriate method, and

then further work to implement it. The sFFT is discarded as an option.

A specific subset of the FFT , the Short Time (or Term) FFT is of interest. This utilizes the 

FFT algorithm, but applies it sequentially to small chunks of the signal. This is is 

provisionally selected as the preferred means of computing the spectrogram

10.3.1 Wavelet Transform 

Wavelet Transform is used in (amongst others) video compression systems. They 

are generally described as being good for transient signals, but not as efficient for highly 

periodic ones. In a digital system, a wavelet transform would be implemented as a series 

of highly specified pairs of  high and low pas s filters 

The output of the high pass filter is the coefficient for a frequency bin, the output of the low 

pass is the input to the next pair of filters.

The output is a spectrum that does have excellent temporal resolution, and is relatively 

efficient to process. It does have a disadvantage (in this application) in that the frequency 

is on a logarithmic scale. Further, while the actual processing of the wavelet transform is 

described as efficient, there implementation would require some detailed study, for an 

unknown reward. 



Therefore the wavelet transform is discarded here, but is noted as a possible topic for 

further study.

10.4 Comparison of Filter Bank and FFT methods of computing spectrogram

 The relative complexity of implementation and resource usage is looked at here. 

This will be approached from a purely theoretical perspective, and also pragmatically, with 

reference to the tools  and functions contained within the Altera 'Quartus' tool suite.

Both analysis will assume a 1KHz sample rate, and 16 bit signed data, creating 32 

frequency bins for the output spectrogram.

10.4.1 Filter Bank spectrogram computation

Given the preceding assumptions, it can be seen that a bank of 32 band pass filters is 

required to compute the spectrogram. There is no pre or post processing requirement (a 

post-processing requirement may emerge to ensure parity in the comparison with the FFT, 

this is ignored at this stage).

Digital filters may be considered  as a sum of series, such as that shown below:

y [n]= 
i=0

N

ci x [n−1]− 
 j=0

Q

f j y [n− j ]

where

y [n] = output of filter

x[n] = input signal

ci  = feedforward coefficients

N = feedforward filter order 

fj = feedback (recursion) coefficients

Q = feedback filter order

The FIR does not include the second summing term (the feedback part) , this is required 

only for recursive filters. 

While the filter itself is simple arithmetic to implement, the derivation of the co-efficients is 

a complex subject, and cannot be covered in great detail here. Generally, these co-

efficients will be derived by some general purpose software tool, such a Matlab, or a 



dedicated programme or applet . Initial work was done iteratively with the authors tool, 

'sincfilter' and also 'fiview' (Jim Peters) to gain a feel for filter requirements. Tools for 

designing digital filters are also to be found within many digital design packages. In 

particular, the Quartus suite that is used in this project provides a 'wizard' to define FIR 

filter coefficients, and even provides the code to implement them.

Since this tool is optimised for FPGA applications, it is appropriate to use this for 

evaluation. 

It was stated previously that the filter bank here would require 32 filters. Assuming a

linear distribution of frequency bins, and that they are confined to the range 0 to 500Hz 

(Nyquist criteria sets upper limit to ½ sample frequency, in this case 1KHz).

Ideally each filter is to be  some 500/32 = 15.635Hz wide, however, in practice, there will 

be some compromises in the design. Some overlap is assumed, either in the pass band 

itself, or in the filter response skirts.

For this evaluation then, based on the above requirement, The Quartus tool was 

used to create FIR band pass filters centred around 16Hz. These were iteratively shown to

require around 64 coefficients, each of 16 bits. This filter would therefore require 64 

multipliers and 64 adders. While the adders can be more or less disregarded in terms of 

FPGA resource, the multipliers cannot. When it is considered that 32 such filters would be 

required, a total of 2048 multipliers is indicated. 

This would give rise to a completely parralelised solution, with filter outputs being 

valid almost immediately after the most recent sample presented (assuming combinatorial 

multipliers, the delay is simply the propagation times.) . This performance would far 

outweigh any requirement, the notional sample rate is 1KHz, but an FPGA may be clocked

in the tens , even hundreds of MHz. In fact the development system currently targeted has 

a 50MHz clock on board, (faster clocks may be generated by the PLL). Taking the 50MHz 

clock as standard rate, then there are 50,000 processing cycles available for every data 

sample taken. This would seem to indicate that a heavily pipelined and multiplexed system

could vastly reduce the hardware overhead, to the extent that a single hardware multiplier 

would be capable of  fulfilling the whole process (2048 multiplications in 50,000 cycles, 

readily achievable). However, it is would seem that the control systems to achieve this 

would be complex, possibly beyond the scope of this project. It is noted that for a real, 

commercial product, this sort of effort would be essential to ensure a cost effective system.

It is suggested that, if a filter system is attempted for this project, a compromise is likely , 

where a single 'generic' filter is used to generate in turn each of the 32 frequency bins. 



This still leaves a need for around 32 multipliers, but is somewhat more manageable.  

Retaining some level of paralleling also has the benefit of leaving some headroom should 

there be some subsequent need to increase the sample rate.

The filter bank method also requires 4096 bytes of ram (32*64*16bit) to store the co-

efficients.

For the purpose of comparison with the FFT method of computing the spectrogram, the 

following assertions are made 

1) Filter bank requires 32 multipliers   (but conceivably 1 multiplier) 

2) Filter bank requires 4096 Bytes of persistent storage

3) Filter bank has no pre or post processing requirements

Additionally, it is stated that the filter bank method requires some work (determining co-

efficients) before any implementation code can commence. The filter bank as above will 

require some sort of relatively complex controller.

10.4.2 FFT Spectrogram computation

It was stated that of special interest is the Short Time FFT. This has a number of 

pre-processing requirements ,the data is broken into segments, and each segment is 

passed through a 'window' than can be thought of as 'smoothing off' the edges of the data 

set in that segment.

An additional requirement, that the segments overlap is not compulsory, but is 

chosen for this application, to give better temporal resolution to any spectral features.

Additionally, there is a post processing requirement with the FFT, in that it outputs complex

data (complex as in two terms, a real and imaginary part, not complex as in complicated). 

These need to be 'reassembled' into a magnitude. The angle, (phase information) is 

discarded.

   A complete, ground up design of an FFT would be beyond the scope of this project. 

Fortunately, the Altera design software provides an FFT 'IP Core '  that is free to use for 

evaluation purposes.

The interface to the FFT is relatively simple, and is a standard across many of Altera's IP 

cores. The resource usage of an  FFT of certain sizes can be readily looked up in Altera's 

documentation.

This is describing an FFT with16 bit data, implemented with four multipliers.



The parameters of this (64 point, 16 bit) do not appear in the table, so the resource 

usage is estimated here. 

There are four multipliers (by definition in this design), and 9792 bits of memory (= 

1224 bytes ) (taking the figure for 256 points and divide by four. This was 'sanity checked' 

against the other entries and was seen to hold true)

For the purposes of comparison, the following assertions are made

1) The FFT uses four multipliers

2) The FFT requires 1224 Bytes of memory

3) The FFT requires an additional memory, in the order of 128 bytes, as an 

input buffer

4) The FFT requires post and pre-processing. 



10.5 Conclusion

The FFT would seem to use less memory and multipliers than the filter bank 

method, but does require pre and post processing. This is offset by the fact that the filter 

bank, as described here, would require some sort of controller, which is of unknown 

complexity.

The FFT does not create any additional design work (ie filter co-efficients). The FFT is 

therefore selected as the means to develop the system. 

11 Display Design Overview

This section captures the proposed layout and style of the spectrogram display.

11.1 Display Layout

A generic VGA display  is defined by the project title as the hardware that will 

display the spectrogram. The default resolution of 640 x 480  is selected. The  display will 

be show  a representation of the raw ECG (oscilloscope – like display) and the 

spectrogram itself. Since the ECG trace is intended as an indicator only, it may be 

confined to a relatively small area of the screen, whereas the spectrogram is the key 

display of interest, this should dominate the display, taking at least one half to two thirds of 

the screen. 

 The size of the display elements was further defined by some design conveniences as 

opposed to firm requirements, i.e. design of memory elements with simple addressing 

schemes

A width of 512 pixels (for both displays) was  selected as a convenient value below the 640

maximum. A value of 256 pixels was selected for the height of the display as a convenient 

value of 'more than half' of the available 480 for the spectrogram display element. A height 

of 64pixels was chosen for the height of the ECG trace. This selection was almost 

arbitrary, being a convenient value that will suffice and be reasonably pleasing to the eye



These display boxes are to be centralised about the x-axis, and distributed approximately 

as per sketch below

11.2 Spectrogram display format

Spectrogram are generally displayed in either of two ways. A '3D' spectrogram 

creates a 'landscape' out of successive spectra. This can be shown as a 'wire-frame' or as 

a surface. 

An example is given below.

 

     

Display region for 
spectrogram

Display region for ECG raw trace

Fig 11.1



Where in this case each spectrum is a trace, offset in the y-axis. Note that this has 

to have some perspective applied to distinguish the traces.

An alternative means to present the spectrogram is to use present it as a flat xy 

plot, where x represents time, y represents frequency, and the magnitude of any given 

point is given by pixel colour  (reminiscent of thermal imaging cameras) or as a 

monochrome/greyscale. An example is given below.

http://en.wikipedia.org/wiki/File:Spectrogram-19thC.png   (under creative commons)

Of these possibilities, the 3D representation is the most striking, but not perhaps the

most representative. Further to this, the 3D display would require some substantial post 

processing. The 2D display is therefore easier to implement, and also perhaps more 

appropriate.

 The ECG trace presents less of a challenge, only a single bit is required per data 

point, as this is to all intents and purposes an 'oscilloscope' type display

The actual memory requirements are somewhat lower than they might first appear, 

the current proposed FFT results in 32 useable frequency 'bins'  and there are currently 

proposed 256 slots per 'screenful' giving a total requirement for the display of  8K by 8 bits 

(=64K bits  for the spectrogram. The ECG trace is 512x64x1 = 32K bits

At this stage, no text legend is proposed for the display, however it is intended to 

have some sort of graticule/grid (not shown on sketch) to enable identification of 

http://en.wikipedia.org/wiki/File:Spectrogram-19thC.png
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frequencies and temporal correlation of spectrogram and ECG.

12 Design activity log – Display

12.1 Display System Block Diagram

The block diagram, below, indicates the intended architecture of  the display 

system.The Spectrogram and ECG display elements are substantially memory areas with 

custom interfaces to translate the horizontal and vertical position of the VGA scan into 

addresses, along with other control line to the rest of the system.

The larger, central block 'Sync and counter generation' is the core of the low level 

VGA driver. The DAC's are, on this board, simple resistor ladders, so no further detail is 

given here, other than to note that they are limited to 4 bits wide each.

12.2 Low level VGA driver

     

The external VGA interface has 5 signals

Fig 12.1



Red  (analogue),Green (analogue),Blue (analogue)

Horizontal Sync  (digital),2 Vertical Sync     (digital)

The three colours  are each derived from a 4bit resistor ladder DAC on the 

development board, giving a maximum, theoretical, possible 12 bit colour resolution. 

The horizontal and vertical sync pulses, and their generation, are defined and designed for

below.

12.2.1 Horizontal Synch pulse

Horizontal sync defines the window in  which a row of pixels is written to the 

monitor. A typical horizontal sync pulse, for a 60Hz refresh rate  is given below

 

The 'porches' provide for some framing for the actual data.

Given that the data period of 25.17us represents 640 'ticks' of the master clock, it is 

relatively straight forward  to derive the clock frequency as 1/(25.17us/640) = 25.427MHz.

This may be noted to differ slightly from some published values (eg 

http://en.wikipedia.org/wiki/Video_Graphics_Array and 

http://www.ami.ac.uk/courses/ami4460_fpga/restricted/designexercises/de5/index.asp

) both of these sources quoting 25.175MHz.  In practice this will not matter a great deal, 

there may be a small impact on number of pixels per row, and a negligible impact on the 

refresh rate.

Since the Development Board does not have a 25.427 MHz (or indeed a 25.175MHz) 

clock source, one must be created. The FPGA device does have Phase Locked Loop  

(PLL) circuitry available to facilitate this. This is beyond the scope of this section, and will 

be covered under code generation

3.77us 1.89us 25.17us
0.94us

31.77us

Active RGB dataFront
Porch

Rear
Porch

Fig xxx Horizontal Sync Pulse Timing

http://www.ami.ac.uk/courses/ami4460_fpga/restricted/designexercises/de5/index.asp
http://en.wikipedia.org/wiki/Video_Graphics_Array


This clock will be used to drive a counter having  around 807 steps* and the value 

of that counter directly correlates to the state of the sync pulse. 

*(Derived by  dividing the  640 pixels by the 25.17us they occupy, and multiplying by the 31.77us that the entire row occupies  

(640/25.17)*31.77  = 807.81

Let us assume that to simplify the memory interface, that when the counter is zero, this 

corresponds to the first pixel in that row, then we have

Count Value Description/Action State of pulse

0 – 639 Directly addressing memory, colour data present High

640 - 660 Rear Porch High

661-756 Synchronisation pulse Low

757-808 Front Porch High
   

It is stated here that while it was attempted to derive exact values, these values given 

above are approximate/notional, and subject to change during development.

Since internally the system does not need to be aware of the porches, the physical 

implementation of the horizontal synch signal simplifies to:

“Horizontal synch is always high, except when the counter is between 660 and  757”

The value of the count will be  made available to other elements in the system.

12.2.2 Vertical Synch pulse

The vertical synch defines an actual frame, or 'screenful' of display. It has much the 

same structure as the horizontal synch, but is considerably slower, its active region 

encompassing 480 lines .

The vertical synch will therefore be derived from a counter in a similar manner to the 

horizontal synch. A typical timing diagram for the vertical synch is given below,

64us 1.02ms 15.24ms
0.35ms

16.6ms

480 rows at 31.77us ea
       =(15.24ms)

Front
Porch

Rear
Porch

Fig xxx Vertical Sync Pulse Timing



The Vsync counter will be incremented at the end of each horizontal scan, and not be 

cleared until after it presents a rear porch after the 480th row has been completed 

Taking the timings given above, and with the same caveat as with horizontal synch , a 

table is presented below indicating the  relationship betveen the count value and the action

and state of the sync line. Where there is a dependency on the Hsync, this is indicated

Vcount Hcount* Description State

0 - 479 all Window in which rows being clocked to display High

480 - 491  n/a Rear porch High

491 - 493 n/a Sync pulse, end of screen Low

493-525 n/a Front porch, High

525 756-808 Vertical counter cleared High
*It is given that Vcount increments when Hcount = 808, so this dependency is omitted

As with the horizontal sync, no intelligence is required about the porches , so the physical 

implementation of the vertical sync can be summed up

“Vertical Synch is always high except when counter is between 491 and 493”

As with the horizontal sync, the count value will be made available to the rest of the 

system for addressing purposes.

If the counters are generating the physical signals for Horizontal sync and Vertical sync it 

seems reasonable to include the RGB data in the output of the same entity, and hence this

will need the RGB from each of the display elements (spectrogram and ecg) and deal with 

multiplexing these with each other and any other features (border colour, graticule,legend, 

etc).

This then allows definition of the interface as below .Global clocks and resets are not 

shown below.



12.2.3 Integration and  verification of Synch Pulse generators

With reference to block diagram in section 12.1, The block titled 'Sync and counter 

generation, and display multiplex ' is coded in the file  VgaCountersAndMux.vhd    within 

the 'TopLayer' project , up to and including Rev 18 of that project is compliant with the 

interface described above.

It is at this point noted that the interface is perhaps a little cumbersome, there are two sets 

of RGB buses, and two control lines to the sync pulse generator. A better architecture may 

be to put a wrapper around the display elements to handle the mux'ing etc, however, at 

this stage the design process will proceed as is, with any improvements reserved for a 

later implementation stage

This was simulated (but note that the PLL was emulated in code, not actually instantiated 

for simulation purposes)  Simulation was not performed at any great depth at this stage, 

just sufficient to demonstrate that basic behavior appears correct
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Note that with all these simulations, a correction is  applied to some of the timing 

measurement where there is an inconsistency with the time step used by the test bench 

and 'real world' time

                              showing two consecutive falling edges of the Hsync pulse

   Note : Time of 32000000pS  (32us) as the test bench uses precisely 40ns period for the 

PLL clock (25MHz) , normalising this with a correction factor of 25/25.175 does yield 

31.7775us which is consistent with the target period.

two consecutive falling edges of Vsync

showing a time of 16800000000ps (16.8ms),applying the same correction factor of 

25/25.175 yields 

16.683ms,  consistent with value defined earlier for the period of the Vsync pulse



 Verify falling edge of  H sync 

Here, the horizontal sync can be seen to have its falling edge at the count of 661, as 

intended. The rising edge was seen to be at count of 757, which was also correct.

Similar checks, not documented here, were performed on the relationship between the 

Vsync line and the counters, these were found to be compliant with the requirements 

defined earlier.

12.3 Generic Display Element

Design was then to commence on the two display elements. With the interface to 

the VgaCountersAndMux entity already defined, it was necessary to consider how the 

display elements will interact with the rest of the system (maths block). The simplest 

possible interface would be to simply 'strobe in' the data in the order that it comes out of 

the maths block. This was adopted, but with the additional refinement of a 'column finished

' signal to provide a means for the memory addressing scheme to re-synchronise if (e.g) 

there is some delay in the math block, and to ensure scrolling occurs reliably. A reset (in 

addition to the global system reset) was provisioned for, to enable the maths block or 

some other part of the rest of the system to reset these elements. This reset was  not  

implemented at this point, merely provisioned for.

Both elements are virtually identical at a high level view, and so  a generic 

description of their features and development is given here, and a generic interface is 

shown (substitute 'Scope' or 'Spectrum' for X in the drawings below.) Global clocks and 

resets are not shown



                

The core of the display elements is a dual port memory. Initially, the circular buffer 

developed for the maths block was considered, however  the Quartus software does 

provide a dual port memory entity that is freely useable.

As the maths block make data available, the values are written into the memory. As 

each item of data is strobed in, the low order write address is incremented. The strobe is 

directly used to enable writing to the memory element.

When a packet (either a frames worth from the FFT or a certain number of ECG points) 

have been been presented, the maths block issues a 'sweep', in other words one of these 

packets represents a column of display data. The 'sweep' is used by the display element to

a) increment(or decrement!)  the high order write address 

b) scroll the display one column

The read address is derived from the Hcount and Vcount signals provided by 

VgaCountersAndMux  entity. As there are more pixels in the display area than there are 

memory locations, some of the low order bits of the count values are discarded prior to 

them being merged. 

Some of the highest order bits from Hcount form the low order bits of the read address, 

and some highest  order bits of Vcount form the high order bits of the read address  (it 

was not compulsory to design it so, it was implemented this way to ensure efficient use of 

memory.) 

The display element has, hard coded into it, a definition of  the screen area it fills. 

This definition is in terms of the Hcount and Vcount values, when these are within certain 

limits, the display element asserts its 'display valid' signal, which in turn informs  

XDisplayBox

Horizontal

Vertical

XRedOut

XGreenOut

XBlueOut

XColourValid

XAmplitude

XStrobe 

 XSweep

XReset



VgaCountersAndMux which RGB data to forward to the DACS and hence display.

Two such elements were coded for, and are named ScopeDisplayBox.vhd and 

SpectrumDisplayBox.vhd . Some functional differences exist between these entities. 

ScopeDisplayBox displays a single, pixel for each data point, whereas 

SpectrumDisplayBox must convert the input value to some colour based representation of 

magnitude. In this instance, a simple scheme is implemented that assigns different bitfields

of the magnitude to each of the RGB registers. While this is a crude method, and 

somewhat difficult to interpret, it is memory and resource efficient. For the purpose of 

system level testing, all that is required is to provide a level of discrimination. It is 

anticipated that this will be re-visited at later date, either within the project or as research 

after. 

Versions of this code at R18 are compliant with the interface described. These were

not simulated at this stage, deferring verification until a data source is available

 

12.4 Integration of display elements and low level driver

With the main elements designed and verified,  a functional test was to be 

designed.

Two new entities, ScopeEmulator and SpectrumEmulator were designed to read some 

hard coded data embedded within them, and place the data on an interface compliant with 

that defined for the display elements. These were each coded as two process state 

machines. (one synchronous, the other asynchronous.)

Both were simulated and verified . As they are nearly identical, only simulation results for 

'SpectrumEmulator , are presented here.



The annotated plot correctly shows the intended behavior, 32 amplitudes are strobed out, 

followed  by a 'sweep' pulse that is used to trigger the scroll of the display.

12.5 Integration tests and demonstration

These entities were then placed in a wrapper entity 'SystemEmulator' This was  

placed in the project 'TopLayer” , within which the display elements were also included, 

along with appropriate interconnect signals within the entities and ports to the outside 

world.

Pin assignments were made , and the full project built, the device programmed.

This was not an immediate success,  the ECG trace was inverted, and the spectrogram 

was not in phase with the ECG. Both of these were relatively easy to debug (a numerical 

error in the delay in the state machine of the SpectrumEmulator entity, and a sign error in 

the ScopeDisplayBox entity.

These changes are captured in R19 of the 'TopLevel' project,

This was then re-built, and functioned satisfactorily. The Hold button was 

implemented on KEY1 of the dev board, and functioned, correctly a screen shot of the 

display is shown below. Note that the data  is emulated, hence, particularly with the 

spectrogram, it is clearly a repeating pattern. 



A popular video streaming site was used to host a demonstration of the display 

scrolling, may be found at the following URL:   http://youtu.be/fYCHteqULuE

13  Design of Spectrogram computation.

13.1 Spectrogram computation high level design 

Having now completed a means of displaying the data, attention now returns to the 

generation of the spectrogram, the design of the part that has generally been referred to 

as the 'maths block'.

The input side of the maths block interface needs to comprise of an input stream for

the ECG sample data, and the global clock and reset. Some additional handshaking will be

provisioned for, a means for the data source to assert that data is valid, and a means for 

the math block to assert that it is ready. It may not be necessary to implement this 

handshaking, but it is provisioned for 

The Maths block has several functions. Based on the current model of an STFFT to 

http://youtu.be/fYCHteqULuE
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create the spectrogram,  it must:

1 Buffer the incoming data and  Manage the data into 'slices'

3 Pre-process the data (apply windowing function)

4 Manage interface to the FFT block 

5 Manage data out of FFT block

6 Post process data out of FFT block, 

7 Manage data to the two display interfaces

13.1.1 Block Diagram

The diagram below  gives some system level indication of the entities that will be 

created, and the interfaces required.



13.2 Description of items in block diagram

Each of the subentities in fig 13.1.1 are discussed in turn, below, and the basis for 

detailed design and coding laid down.

13.2.1  FIFO (circular buffer)

This block buffers the incoming data and manage into 'slices' . This is to fulfill the 

requirement to sequentially present  'overlapping slices' of the data to the spectrogram 

generator. 

13.2.2 Window Function

The FFT as used in this system is considered to be of short duration (containing only 10's, 

rather than 100's or 1000's of sample). This tends to lead to some spurious outputs, 

referred to as spectral leakage. A common mitigation for this is to pass the input through a 

'window' which attenuates the samples at the beginning and end of the data slice, reducing

the contribution these make. There are a number of functions suggested for this. For this 

project, a curve known as the 'Hann Function' is selected.

13.2.3 FFT

The FFT itself,  as currently defined is a piece of Altera Intellectual Property, a feature 

provided by the development software. This is freely provided for demonstration and 

evaluation  purposes, subject to certain usage restrictions. It would be expected that for a 

commercial product, a FFT would be developed 'in house' as there would be opportunities 

for application specific optimizations. For this project, however, use of the IP is 

appropriate.

 This does require that the interface to it is compliant with a proprietary standard known as 

“Avalon “ . The FFT block as shown in fig qqq  does include the Avalon interface and  any 

additional control needed. 

 

13.2.4 Post Process

The results from the FFT block are the real and imaginary components of complex 

numbers. These need to be combined, to create a single magnitude value. This may be 

achieved trigonometrically or arithmetically, or even by look up table. Since there is a large

difference between the main system clock (50MHz)  and the data rate (TBD, but is 10's of 



Khz) there are plenty of cycles available to do the processing without recourse to piplining 

schemes. The phase information that is also encoded in the complex numbers is not 

required in this application, so is not processed.

The output of the FFT magnitude plot it symmetrical, so half  of the output data can be 

discarded.  

13.3 Management of data from the maths block to display interfaces

The FFT post processing entity is to be designed in such a way as for it to simply clock it's 

output to the  SpectrumDisplay entity.

The ECG raw trace needs a little more management. While it is passed unprocessed to 

the 'ScopeDisplay' entity, it must be gated somewhat, recalling the slicing of the input data 

(i.e. the overlapping) the raw ECG data is transferred at  ¼ of the rate of the FFT outputs.

This remains to be decided at this stage, and will be dealt with at a fairly late stage of 

integration, after all the main entities have been designed and tested.

While the interfaces to and from the Maths block appear relatively simple, there will 

be a significant  number of entities involved. 

13.4 Design of sub entities in 'Math Block'

13.4.1  Note on change of resolution.

It should be  noted at this point that a decision has been made to do this initial 

design work  at a lower resolution that as determined in the earlier section 'Derivation of 

Hardware requirements for  spectrogram capture' ;

 Sample Rate        1Khz 

 Sample Size        8 Bits

 FFT Size          64 Samples

The purpose for this quite drastic reduction is to ensure that a build of the entire system is 

actually possible within the available resource of the device selected. Resolutions may be 

scaled up when a working system has been built and tested. 

A fairly ' middle out' approach was taken for the implementation of these entities, starting 

with the FFT block, moving 'left' through the pre-processor and buffer/slicer entity, before 

completing the post-processing feature , and 'hand off' to the display system itself. The 

means of obtaining raw ECG data is beyond the scope of this section, but is returned to 

later or something .



13.4.2 Design and test of FFT controller.

Prior to designing and testing the FFT controller, it was decided to verify the 

behavior of the FFT block in isolation. This is documented here, prior to discussing the 

controller. The purpose of this is to ensure that when the controller itself is developed, 

there is confidence in the FFT block.

A spreadsheet  (FourSines.ods, attached with electronic copies of this dissertation, or 

downloadable from www.peterbrewster.co.uk) was used to construct a signal composed of 

four well defined frequencies fractions of the sample rate, namely  1/256, 1/64,  1/16 and 

1/8  converted into suitable 16 bit values for the FFT block test bench.These formed the 

real input to the FFT.  This was plotted for visual verification, however, a detailed analysis 

of the spreadsheet data is recommended if the reader wishes close inspection of the 

validity of the signal.

The FFT also expects an imaginary input, these were set to zero.

The FFT tests were run, and the real and imaginary outputs imported to the same 

spreadsheet to be combined into a magnitude plot for analysis. The spreadsheet was used

to create a plot of this (below) . This is provides an excellent result, there are four distinct 

peaks, located in the correct positions for the frequencies they represent.

http://www.peterbrewster.co.uk/


The plot is shown at close up, much of the output has been discarded, as the FFT output 

exhibits symmetery, i.e. repeats the data as a 'reflection' around the centre of the x-axis.

Given the strength of this result, the controller could be designed with confidence.

Initially the FFT controller seemed to be difficult to implement, given that it is a piece

of vendor IP with the proprietary  'Avalon' interface. However, once the naming 

conventions and timings were understood, it resolved itself as a fairly trivial problem.

Two entities, 'FFTSourceController.vhd' and 'FFTSinkController.vhd'  were created. 

The naming of the sink and source controllers reflect the functionality with respect to the 

Avalon interface, from the perspective of the  FFT block, ie 

the sink controller manages data to the FFT, 

the source controller manages data from the FFT to the post-processor.

 Both of these entities where then instantiated in a wrapper function ' FFTController.vhd '.

The FFTController entity also instantiated the FFT itself.

During debug, of particular note was a   feature of the FFT block  Avalon interface, that if it 

is not informed that there is no error detected by the sink controller, it seems to assume 

that there is one, and remains quite inert. This did not appear to be documented in the 

user guides to hand, however this may no longer be the case for later release. This is 

mentioned here as this did cause a  delay until the error was found. In this application, this 

is not an issue in itself, and was resolved simply by tying the relevant lines to logic 0. 

Initial simulation showed the interface to be functioning correctly.



13.4.3 Design and test of Preprocessor.

The preprocessor has two functions, the 'windowing' and the buffering and 'slicing' . 

These are discussed in turn, here.

 

13.4.3.1  Design of window function 

As previously indicated, the input data is multiplied by a corresponding Co-efficient in the  

'Hann Function' 

The Hann function is given by Co-efficient(n) =  sin2(πn/(N-1)     

                     (where N = number of samples in window/length of table)

The effect of the function, to attenuate the first and last samples in the input data can be 

visualised when they are plotted, as below.

A  spread sheet,  hannfunction_arrayMaker.ods  (distributed with electronic copies of , or 

downloadable from www.peterbrewster.co.uk )  was used to create the LUT entries, and 

present them in a format that could be pasted directly into VHDL as an array.

To preserve resolution, the values were scaled by a factor of 1024 before being imported 

to the code.

The wrapper for the function was relatively simple, consisting of two processes, one

managing the clocking in and out of the data, and tracking which member of the LUT to 

apply, and the other actually applying the factor, and scaling the result back down.

Initial simulation demonstrated the overall behavior appeared correct . Further testing 

using fixed/controlled  inputs was performed, a plot of one such simulation is given below.

This was tested and simulated. This is not evidenced here, as a subsequent refactoring 

permitted this function to be absorbed by the next entity to be designed, described below.
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13.4.3.2 Design of  Buffer  and 'Slicer'

The function of this block is to buffer the data, and present it to the FFT block (via the 

window function, described above) in packets of the appropriate size. In addition to that, it 

also ensures that the packets have the 'overlap' required to improve the temporal 

localization of any spectral features, as, discussed in section blab of the system level 

design specification.

The Buffer was designed around a dual port ram 'megafunction' 

The write address register of the Dual Port Ram was automatically incremented on every  

ECG_Clock. The Read Address register was also similarly incremented, but also, on every

64th data input , the Read Address Register has  a negative offset  of 48 applied to achieve

the overlap requirement. As indicated previously, the application of the Hann function was 

subsequently moved into this entity in an attempt to simplify the system level design. 

Simulation, below, shows the output of the buffer, application of Hann function evidenced 

by the fixed input giving an output that rises and falls over the correct window length.

13.4.4 Design of post processor

Given than all of the substantial 'input side' blocks are now complete to a viable state 

(leaving aside the acquisition of raw data) it was decided to proceed  with design of the 

post processor, as the data acquisition may be emulated by some digital (e.g. serial port) .

With the post processor complete, it will then be possible to attempt to move to a system 

integration phase

There is a further element required in the output stages, a buffer/delay to forward the raw 

data to the 'oscilloscope' display. While this is expected to be relatively trivial, it is noted 

here as required, to be dealt with at some late integration stage.



The purpose of the post processor has already been given.  In this implementation, 

the calculation is performed by what amounts to Pythagoras' theorem, by treating the real 

and imaginary parts as  two sides of a right angled triangle, the result being the 

hypotenuse. This method is appropriate here because of the relatively small  word length, 

and the inherent guarantee (in the way the FFT block functions)  that  they have the same 

exponent. A further feature of this system that lends itself to such a relatively simple 

solution is that the data is very slow with respect to the fastest clock available. This permits

a multi-stage method that does not rely on any complex pipeline schemes.

The post processor therefore needs  a means of finding the squares and square 

roots of the data.

Squaring is considered trivial in this case, as a multiply function will suffice. This can be 

achieved with a combinatorial solution, and may be implemented on a 'one per' basis, or 

as a process that is re-used. In this case, it was decided to use a single multiplier and re 

use this. These are considered relatively trivial and will not be discussed in further detail 

until the final 'post processor,' has been implemented,

Taking the square root (of the 'square of the hypotenuse' ) was initially viewed as a difficult 

problem, however it soon yielded to research, in particular the paper “A New Non-

Restoring Square Root Algorithm and its VLSI Implementation “  (Li and Chu, University of 

Aizu, Japan, 1996) was studied.

While the method presented in that text was not  used, it was that paper's 

discussion on earlier methods that gave the insight- the relatively short bit length of the 

numbers in question meant that there was no real reward (in clock cycles) for 

implementing a complex algorithm. 

The radicand is the sum of two squares, both of which have, as discussed, the same 

exponent. The practical benefit of this is that the exponent does not need to be 

considered, the square of the mantissa is found, and the exponent is simply ignored and 

re-applied unchanged to the final answer. 

The selected algorithm is quite simple, starting with a seed value, it progressively sets bits 

(starting from most significant to least) and testing at each iteration if the square of this 

new value (multiplied by itself )is equal, less than, or greater than , the radicand. This 

therefore takes as many iterations as half the number of bits in the square.

This was implemented over two source files,  SquareRoot.vhd and RootIterator.vhd .



RootIterator performs the multiplication and comparison functions, returning a flag to set or

clear the relevant bit in the accumulator (and a 'finish' flag just in case it finds a perfect 

square quite quickly) RootIterator has no knowledge of the state of the whole calculation. 

SquareRoot manages the setting of the bits, and compiles the result.

The code was not written to be (clock ) cycle efficient, it was written in such a style as to 

permit simulation to view the system at every stage, and study its operation in detail, as it 

was identified as something worthy of study in isolation

Some potential efficiencies were identified, for example, finding the first bit set in the

radicand would permit the solution to be commenced a number of iterations along the 

sequence (i.e. omission of  leading zeros) . Again, for the relatively small numbers that are 

being used here, the reward would be small, possibly even negative.

The  SquareRoot function was simulated in isolation to the rest of the post processor. It 

can be seen to be accurate to 1 LSB. Simulation capture presented here

It can be seen that the function will always round down (in the absence of a perfect 

square). It may be possible to mitigate for this by shifting the radicand a multiple of two 

places to the left, and correcting at the end, however, given that the maximum error stands

at -1LSB, this will not be considered further.

The square root was instantiated in the post processing entity. Since this is 

mathematically equivalent to applying Pythagoras theorem , (taking the root of the sum of 

two squares) the entity  was named Samos.vhd, after the island where Pythagoras was 

born.

The post processor was simulated and seen to function as predicted, plot inserted below,



Amongst the test data, the encircled examples provide verification that is easily 

recognizable to any who recall their elementary trigonometry, the “3,4,5” and “5,12,13” 

triangles. Closer attention to the other results does also indicate the function operates 

correctly, and that it exhibits the maximum error of -1 LSB, inherited from the square root 

function.

This then completes the substantial part of the design , there will be some need for 'glue 

logic' in the implementation phase, this will be developed as this progresses.

13.5  Integration and test of elements

A low level block diagram is given here, based on the source code. It is not a 

system diagram as such, it is presented to show how the code is built, and which element 

intantiates which other elements. Some very lowest level objects , some memory items 

and a PLL clock source are not shown, however these are compiler generated items, not 

handwritten code for the project. 



Before any integration can take place, an oversight must be addressed.

The feature that creates the  overlapping of the slices does mean that the FFT will not, as 

the design stands, be consuming data  as fast as it is being presented, by a factor of four. 

It is not proposed to remove the overlapping, as this contributes to the value of the system.

Instead, a clock at four times the sample rate will be derived from  the 50MHz clock, and 

used to drive the FFT. This was implemented in 'ClockGen.vhd' . 

This is considered a relatively trivial matter, so will not be considered further here.

There is also an outstanding issue, in that there is a lag between  the start of data being 

loaded into the FFT core, and  valid data coming out. Simulations show this to be some 

168 clock cycles. While for the output FFT output data this is of no concern, as the FFT 

behaves as a buffer for the output, there will be some loss of synchronisation between the 
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raw data (the 'scope' like trace) and the ECG. In the interim, the raw data display will be 

disabled, but it is noted that the resolution to this would be to introduce a FIFO buffer, of 

sufficient length to accommodate this delay. This would then simply be enabled once the 

FFT signals the start of valid data output.

 

Initial integration builds would use an emulated data source,  much as was used in the 

display system tests. An entity named 'ScopeSource.vhd'  was created. This permitted  the

system to be developed virtually to completion without the distraction of creating an 

interface to some other hardware. That will be left as time permits.

A branch of the earlier code was made, and pulled into a project named 

'SystemWrapper.qpf' 

 This was built and programmed on to the device. The image was consistent with a low 

resolution spectrogram. This was captured and placed on the video streaming site at the 

following URL   http://www.youtube.com/watch?v=pW_UyI5mOwg 

That test caught an error in the system, in that both 'halves' of the FFT output had been 

used in the computation of the spectrogram. This was readily corrected by implementing a 

spare signal on the interface from the FFTController entity .In addition the waveform in the 

'ScopeSource' entity was modified to be more periodic, with approximately 16 cycles per 

64 samples. This would give strong output in the frequency bins around (slightly over) ¼ of

the sample frequency. 

The system was rebuilt and re-programmed. A screenshot of that output is shown below

http://www.youtube.com/watch?v=pW_UyI5mOwg


This more closely resembles a spectrogram. The high density of coloured pixels in 

the upper middle half  to correlates  to the ¼ sample rate suggested (the top of the screen 

representing  nyquist limit of ½ the sample frequency.)

This does now indicate a new ,introduced weakness in the system. When the use of

the 'upper half' of the spectrogram was fixed, no steps were taken to then use up the 'dead

space' on the display. To do so would double the (visual) dynamic range of the system. 

This would represent a disruptive change to the code base at a late stage in the project, 

and hence is left as-is.

It was noted in Section 12.3 that a quite crude method of creating a colour 

representation of the magnitude was used. A typical 'thermal image' type of representation 

would have the lower magnitudes in blue,moving through shades of green, to red, and 

yellow , before using white as the greatest magnitude. While this scheme is not inherently 

correct, it would seem to be an ideal output format as it is more likely to be intuitively 

grasped by the user. At this stage, the arithmetic transform to implement this will not be 

atttempted, however it will be disscussed in further detail in section 15, (Conclusions and 

Suggested further work). A compromise was built, whereby, at the cost of large part of the 

resolution, a grey scale where each of the RGB registers is set to the same value, derived 

from the upper 4 bits of the spectrogram data. A screen shot of this is given below.

Design activity ceases here for the  purpose of this project. The next section presents  

conclusions and indicates areas of further design work and study.



15 Conclusions and Suggested further work

The concept of a spectrogram display system on an FPGA was evaluated, in terms 

of usefulness and possible commercial viability.  There was mixed findings as to 

commercial viability of the system in the original stated application, however the overall 

balance would seem to support the view that this technology would be a contender for the 

most cost-effective solution should a real demand exist. This is also mitigated by the fact 

that a number of other potential applications were readily identified. Other issues around 

product realisation were looked at. An outline functional specification was created, and 

agency requirements had some cursory study.

A system level design was raised, and hardware requirements derived. A further, 

highly detailed and somewhat idealised system was designed. This covered the full 'end to

end system' from audio level input to VGA output.

Based upon a subset of this design, functional blocks were coded in VHDL. These 

did not encompass the entire scope of the detailed design, a system with emulated input 

was designed. These blocks where verified by simulation, and seen to behave correctly in 

isolation. The blocks were integrated into full system, built, and a device programmed. An 

appropriate output was viewed on the VGA monitor.

While the system did function as intended, there are a number of areas of that  would 

benefit from further work. 

1) Greater resolution of output display

2) Improvements to readability/aesthetics of display

3) 'Real' (not emulated) data interface.

4) Data Capture

Each of these is now discussed it turn.

15.1 Greater Resolution of output display

It is perhaps self evident to say that an increased level of detail on the display makes the 

system inherently more useful. To make any significant change would require greater 

memory made available as display RAM . The resource usage of the final build did not 

permit significant increases in memory to be made available, and moving to a larger 

device is not a cost effective solution. It is proposed that external memory devices are 

used as display ram (this was referred to, somewhat obliquely, in section 6.2.6, some 

rough budgetary costings for the system indicated use of DDR memory). This would 



require the creation of a driver to emulate Dual Port memory – so the spectrogram 

generator could write to it while the VGA block read from it. It is suggested that this is 

achieved by the driver having small read and write buffers that are visible to the rest of the 

system, and a state machine driven by a clock at a higher rate than the rest of the system. 

PLL resources do remain to achieve this. From a coding point of view, this in itself would 

not be too onerous a task.

15.2  Improvements to readability/aesthetics of display

15.2.1 Colour Scheme

It was stated that the colour scheme to represent the amplitudes was implemented 

without  any specific scheme. The ideal would be adhere to some colour temperature 

scheme similar to that seen on thermal imaging equipment. A relatively straight forward 

way to implement this would be a look up table. In the case of our 12bit RGB values, the 

complete table would require 4095 entries, each of 12 bit width, (6.1KBytes). This may be 

hard coded into the source ,or read from an external device.  The current usage of Video 

memory is 8K. Assuming the implementation of an external memory device as suggested 

in 15.1, then there would clearly be resource freed up to fit this table in as hard code. 

That is not to say that exploration of algorithm based solutions to the colour 

mapping may be worthwhile. This may require study of the colour space models currently 

used in computing (HSL and HSV) however that is beyond the scope of this work. 

15.2.2  Restoration of the raw data trace

In the original design and early display test, a small window at the bottom of the screen 

showed a trace representing the input data, and this was temporally correlated to the 

spectrogram. As design progressed, it was noted (Section 13.5) that a buffer was needed 

to accommodate the lag between data being presented to the FFT block and output being 

produced. This still stands, and the proposed solution remains a circular FIFO, output 

enabled by the FFT/post processor. No further comment is made, as experience of 

building FIFO's was gained in this project.



15.2.3  Introduction of graticule and legend

This is referred to describe what features would be required to make the system 

useful. The means to implement these are not discussed . The graticule would be a simple

overlay grid, with the Y-axis being consitent across the main (spectrogram) and secondary 

(data) . A legend indicating frequency on the Y-axis would be helpful. An indication of the 

relationship between colour and magnitude would also useful. This may be in the form of a

simple vertical colour strip at one side the display.

15.3 'Real' not emulated data interface.

The system as shown in this project is shown as an emulated system. Clearly this is

not useful for a real instrument. Section 7.6.4 does discuss the implementation of an audio

codec. For  the device indicated, an I2C master is required, however there are other ADC's

available that may be hardware configured to constantly sample and output conversions 

constantly. In either case , it is a requirement to make some additional hardware available. 

15.4  Data Capture

In addition to the VGA display, it is suggested that some permanent record of the 

trace be captured. It is proposed that the simplest way to do this would be for the system 

to constantly stream, either by RS232 or USB, the input and output data, to a host 

computer. It is also proposed that sensitivity to some push button be added, so that a 

'mark' may be place on the data to indicate that an area of interest was noted. The data 

may be captured by a host computer  for review, analysis, or distribution.

In addition to the functional/product related items discussed above, some areas of further 

study are highlighted. This are purely of academic interest, and are listed simply as a set 

of topics with brief explanatory notes.

Intelligent recognition of PQRS complex

A number of papers where seen that looked at systems that would (using spectral 

analysis) be able to distinguish the parts of the signal as defined in Einthovens notation. 

The purpose of this is for machines to decide if an ECG is normal or not. It would appear 

that ecg machines are currently capable of this, so this is an area of evaluation.



Correlation of ECG and Phonocardiogram

Before the existence of ECG's , there was, and still is, the ubiquitous stethoscope, used for

listening to various anatomical functions, but most famously the heart beat. A paper was 

seen that used spectral analysis of Phonocardiograms to identify specific conditions, in 

particular 'murmurs'. It is suggested that simultaneous correlation of ECG and 

Phonocardiograms (not necessarily in the frequency domain) may be useful in itself. This 

is far beyond the scope of this project, and this may already be current practice. It is 

speculated , for example, that if a defect is visible in the Phonocardiogram, but not the 

ECG, then this is likely to be a structural (eg valve flutter) issue than  (eg) a heart muscle 

issue. This would require  a detailed and thourough literature review to identify if it is likely 

to be an area of interest.

Other transform methods

When the decision to use the FFT to create the spectrum was made, other similar 

transforms were discussed. In particular, the Sparse FFT and the wavelet transform were 

referenced. No detailed discussion will be made here, other than to re-iterate that these 

may offer better resource usage than the FFT. Both of these techniques do have a greater 

pre-processing requierment, and more complex implementation than the FFT. It seems 

likely that they may be more suited to computer software implementation than FPGA , 

however that is posed as more as question for study, not a technical position.
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Appendix A    SincFilter program : 

Executable, Instructions, Sample files, Source code, and build script are available in the  

archive 'SincFilter.zip' distributed with electronic copies of this dissertation, or alternatively

may be downloaded from www.peterbrewster.co.uk     in the case of a paper copy. As this 

is not a fundamental part of the project, it is not included as a listing here.

Appendix B VHDL source code

For completeness, this must be included, file by file, here.  This continues for many 

pages . An attempt has been made to list it in some semblance of functional hierachy.  

Also, more usefully, with electronic copies of this work, an archive ' SystemWrapper.zip ' is 

distributed. Archive may also be downloaded from www.petebrewster.co.uk.  

Appendix C Miscellaneous tools

Various spreadsheets and other tools were createdin the develoment work. Those that are 

directly mentioned are distrubuted with the electronic copies of this work, in the archive 

'Tools.zip' or may be downloaded from www.peterbrewster.co.uk .

Appendix B - listing
System wrapper

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;
LIBRARY ieee ;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all; 

-- system emulator, 

entity SystemWrapper is

port
(

Clock50 : in std_logic;
Clock27 : in std_logic;
nReset : in std_logic;
Hold : in std_logic;  -- a button that freezes system
--NullData : in std_logic;
Debug0 : out std_logic; --JP1.1  PinA13
Debug1 : out std_logic; --JP1.2  PinB13
Debug2 : out std_logic; --JP1.3 PinA14
Debug3 : out std_logic; --JP1.4 PinB14

--vga
H_Sync  : out std_logic;
V_Sync : out std_logic;
RedOut : out std_logic_vector(3 downto 0);
GreenOut : out std_logic_vector(3 downto 0);
BlueOut : out std_logic_vector(3 downto 0)

);
end SystemWrapper;

http://www.peterbrewster.co.uk/
http://www.petebrewster.co.uk/
http://www.peterbrewster.co.uk/


architecture RTL of SystemWrapper is

signal SpecClock : std_logic; -- in this model, the spectrum runs at 1/4 clock

signal Clock4K : std_logic;
signal Clock1K : std_logic;
signal ClockArb : std_logic;
signal RawData : std_logic_vector (7 downto 0);
signal ScopeHold : std_logic;

signal SpecAmplitude :  std_logic_vector (7 downto 0);
signal SpecStrobe :  std_logic;  -- strobe the value in. might not be totally necessary
signal SpecSweep :  std_logic;  -- probably only as an overide, should be automatic?
signal SpecReset :  std_logic; -- as opposed to global, might use for pause/restart

signal ScopeAmplitude :  std_logic;
signal ScopeStrobe :  std_logic;  -- strobe the value in. might not be totally necessary
signal ScopeSweep :  std_logic;  -- probably only as an overide, should be automatic?
signal ScopeReset :  std_logic; -- as opposed to global, might use for pause/restart

component SpectrumGenerator is
port

(
Clock50 : in std_logic;
nReset : in std_logic;
Clock4K : in std_logic;
Clock1K : in std_logic;
Hold : in std_logic;
RawData : in std_logic_vector(7 downto 0);
--NullData : in std_logic;
-- currently just outputs stuff
SpecAmplitude : out std_logic_vector (7 downto 0);
SpecStrobe : out std_logic;  -- strobe the value in. might not be totally necessary
SpecSweep : out std_logic;  -- probably only as an overide, should be automatic?
SpecReset : out std_logic; -- as opposed to global, might use for pause/restart
ScopeHold : out std_logic; -- so the spectrum can hold the scope back until 

  -- some spectral data 
is on its way

Debug1:out std_logic
);

end component;

component ScopeSource is
port

(
Clock50 : in std_logic;
nReset : in std_logic;
Clock1K : in std_logic;
Hold : in std_logic;
ScopeHold : in std_logic;  -- I know!! a hold was already provisioned. Trust me!
--NullData : in std_logic;
-- currently just outputs stuff
ScopeAmplitude : out std_logic;
ScopeStrobe : out std_logic;  -- strobe the value in. might not be totally necessary
ScopeSweep : out std_logic;  -- probably only as an overide, should be automatic?
ScopeReset : out std_logic; -- as opposed to global, might use for pause/restart
RawData : out std_logic_vector (7 downto 0)

);

end component;

component ClockGen is
port

(
Clock50 : in std_logic;
nReset : in std_logic;

Clock4K : out std_logic;



Clock1K : out std_logic;
ClockArb : out std_logic

);

end component;

component DisplaySystem is
port (
--global

Clock50 : in std_logic;  -- might get a faster ext clock later!
clock27 : in std_logic;
nReset : in std_logic;

--vga
H_Sync  : out std_logic;
V_Sync : out std_logic;
RedOut : out std_logic_vector(3 downto 0);
GreenOut : out std_logic_vector(3 downto 0);
BlueOut : out std_logic_vector(3 downto 0);

-- system interface
--interface from rest of system  {TBA}

-- system interface
--interface from rest of system  {TBA}
SpecAmplitude : in std_logic_vector (7 downto 0);
SpecStrobe : in  std_logic;  -- strobe the value in. might not be totally 

necessary
SpecSweep : in  std_logic;  -- probably only as an overide, should be 

automatic?
SpecReset : in  std_logic; -- as opposed to global, might use for 

pause/restart

--Scope
ScopeAmplitude : in std_logic;
ScopeStrobe : in std_logic;  -- strobe the value in. might not be totally 

necessary
ScopeSweep : in std_logic;  -- probably only as an overide, should be 

automatic?
ScopeReset : in std_logic -- as opposed to global, might use for 

pause/restart
);

end component;

begin

Debug0<=SpecStrobe;
--Debug1<=SpecSweep;
Debug2<=RawData(0);
Debug3<=SpecAmplitude(0);

SpecEm : SpectrumGenerator

port map

(

Clock50 => Clock50,-- in this model, the spectrum runs at 1/4 clock => Clock50,
nReset => nReset,
Clock4K => Clock4K,
Clock1K => Clock1K,
Hold => Hold,
RawData => RawData,
--NullData => NullData,
-- currently just outputs stuff
SpecAmplitude => SpecAmplitude,
SpecStrobe =>SpecStrobe ,
SpecSweep =>SpecSweep ,
SpecReset => SpecReset,
ScopeHold => ScopeHold,

Debug1=>Debug1

);

ScopeEm : ScopeSource

port map

(



Clock50 => Clock50,
nReset => nReset,
Clock1K => Clock1K,
Hold => Hold,
ScopeHold => ScopeHold,
--NullData => NullData,
ScopeAmplitude => ScopeAmplitude,
ScopeStrobe => ScopeStrobe ,
ScopeSweep => ScopeSweep ,
ScopeReset => ScopeReset,
RawData => RawData

);

ClockGenInst : ClockGen

port map

(
Clock50,
nReset,

Clock4K,
Clock1K,
ClockArb

);

DisplySystemInst : DisplaySystem
port map

(
Clock50, 
clock27, 
nReset, 

--vga
H_Sync, 
V_Sync,
RedOut,
GreenOut,
BlueOut,

-- system interface
--interface from rest of system  {TBA}

-- system interface
--interface from rest of system  {TBA}
SpecAmplitude,
SpecStrobe,  -- strobe the value in. might not be totally necessary
SpecSweep, -- probably only as an overide, should be automatic?
SpecReset, -- as opposed to global, might use for pause/restart

--Scope
ScopeAmplitude,
ScopeStrobe, -- strobe the value in. might not be totally necessary
ScopeSweep,  -- probably only as an overide, should be automatic?
ScopeReset -- as opposed to global, might use for pause/restart

);

end RTL;

spectrum generator 

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;
LIBRARY ieee ;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all; 

-- system emulator, 

entity SpectrumGenerator is



port
(

Clock50 : in std_logic;
nReset : in std_logic;
Clock4K : in std_logic;
Clock1K : in std_logic;
Hold : in std_logic;
RawData : in std_logic_vector(7 downto 0);
--NullData : in std_logic;
-- currently just outputs stuff
SpecAmplitude : out std_logic_vector (7 downto 0);
SpecStrobe : out std_logic;  -- strobe the value in. might not be totally necessary
SpecSweep : out std_logic;  -- probably only as an overide, should be automatic?
SpecReset : out std_logic; -- as opposed to global, might use for pause/restart
ScopeHold : out std_logic; -- so the spectrum can hold the scope back until 

  -- some spectral data 
is on its way

Debug1 : out Std_logic  
);

end SpectrumGenerator;

architecture RTL of SpectrumGenerator is

-- stuff for spec gen interface, needs something actually doing withit

signal Data_Good : std_logic;
signal sink_eop : std_logic;
signal Buffered_Data : std_logic_vector (7 downto 0);

-- stuff added in when FFT added
signal DataValid : std_logic;

signal RealOutData : std_logic_vector (7 downto 0);
signal ImagOutData : std_logic_vector (7 downto 0);
signal RealExp : std_logic_vector (5 downto 0);

signal DataOutGood :  std_logic;

-- stuff added in when post processor added
signal ExpOut : std_logic_vector (5 downto 0);
signal DataGood : std_logic; -- LOOK OUT!!! there is also a Data_Good, must sort this out
signal SpecAmplitude_gash : std_logic_vector (8 downto 0);
signal SweepCount : std_logic_vector (7 downto 0);

component SliceBuffer is
port (

Clock50 : in std_logic;  -- might get a faster ext clock later!
nReset : in std_logic;
Clock4k : in std_logic;  --sample clock
Clock1k : in std_logic;  --sample clock
RawData : in std_logic_vector (7 downto 0); -- 
DataGood : in std_logic; -- inform this entity that data is valid
sink_eop : in std_logic; -- informing FFT is end of packet, and here 

to reset window index

Buffered_Data : out std_logic_vector (7 downto 0)  -- the data after 
window applied

);

end component;

component FFTController is

port (
Clock50 : in std_logic;  -- might get a faster ext clock later!
nReset : in std_logic;

ECG_Data : in std_logic_vector(7 downto 0);
ECG_Clock : in std_logic;
DataValid : in std_logic;

RealOutData : out std_logic_vector (7 downto 0);



RealExp : out std_logic_vector (5 downto 0);

ImagOutData : out std_logic_vector (7 downto 0);
sink_eopx : out std_logic;

DataOutGood : out std_logic

);
end component;

component Samos is
port
(
      Clock50 : in std_logic;  -- might get a faster ext clock later!

nReset : in std_logic;
ECG_Clock : in std_logic;

 DataGood : in std_logic;
RealIn : in std_logic_vector (7 downto 0);
ImagIn : in std_logic_vector (7 downto 0);

ExpIn : in std_logic_vector (5 downto 0);

ResultReady : out std_logic;
ResultOut : out std_logic_vector (8 downto 0);
ExpOut : out std_logic_vector (5 downto 0)

);
end component;

begin
DataValid<='1';
DataGood<='1';
SpecStrobe<=Clock4K;
--SpecSweep<='0';
--SpecAmplitude(7 downto 2) <= ExpOut; 
SpecAmplitude (7 downto 0) <= SpecAmplitude_gash(8 downto 1);
Debug1<=Buffered_Data(0);

SweepOut : process (SweepCount,nReset)
begin 

if (nReset='0') then
SpecSweep<='0';

else
if (SweepCount="11111111") then

SpecSweep<='1';
else 

SpecSweep<='0';
end if;

end if;
end process;

SweepCounter: process (nReset,Clock4K,SweepCount)
begin

if (nReset='0') then 
SweepCount <=  "00000000";

else if(rising_edge (Clock4K)) then
SweepCount <= SweepCount + '1';

end if;
end if;

end process;

SliceBufferInst : SliceBuffer

port map

(
Clock50 =>Clock50, 
nReset =>nReset,
Clock4k =>Clock4k ,
Clock1k =>Clock1k ,
RawData =>RawData,
DataGood =>DataGood,
sink_eop =>sink_eop,

Buffered_Data =>Buffered_Data



);

FFTControllerInst : FFTController
port map

(
Clock50 => Clock50,
nReset => nReset,

ECG_Data =>  Buffered_Data,
ECG_Clock =>  Clock4k,
DataValid => DataValid,

RealOutData => RealOutData,
RealExp => RealExp,

ImagOutData => ImagOutData,
sink_eopx => sink_eop,

DataOutGood => DataOutGood
);

SamosInst : Samos
port map
(

Clock50 => Clock50 ,  
nReset => nReset  ,
ECG_Clock => Clock4k ,

DataGood=> DataOutGood,
RealIn => RealOutData ,
ImagIn => ImagOutData ,

ExpIn =>  RealExp,

ResultOut  => SpecAmplitude_gash ,
ExpOut => ExpOut 

);

end RTL;

Scope source

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;
LIBRARY ieee ;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all; 

-- system emulator, 

entity ScopeSource is

port
(

Clock50 : in std_logic;
nReset : in std_logic;
Clock1K : in std_logic;
Hold : in std_logic;
ScopeHold : in std_logic;  -- I know!! a hold was already provisioned. Trust me!
--NullData : in std_logic;
-- currently just outputs stuff
ScopeAmplitude : out std_logic;
ScopeStrobe : out std_logic;  -- strobe the value in. might not be totally necessary
ScopeSweep : out std_logic;  -- probably only as an overide, should be automatic?
ScopeReset : out std_logic; -- as opposed to global, might use for pause/restart
RawData : out std_logic_vector (7 downto 0)

);
end ScopeSource;



architecture RTL of ScopeSource is

type Word5Array is array (0 to 255) of integer ;
signal ScopeLut : Word5Array;
signal index : integer range 0 to 255;
signal SeekAmplitude: integer;

begin

process (nReset,Clock1K)
begin

if (nReset ='0') then 
RawData <= "00000000";

   elsif (rising_edge (Clock1K)) then
RawData <= std_logic_vector(to_unsigned(SeekAmplitude,8));

end if;
end process;

process (nReset,Clock1K)
begin

if (nReset ='0') then 
index <= 0;

   elsif (falling_edge (Clock1K)) then
index <=index+1;
if (index = 254) then

index <= 0;
end if;

end if;
end process;

SeekAmplitude<=ScopeLut(index);

ScopeLut( 0 )<= 0 ;
ScopeLut( 1 )<= 3 ;
ScopeLut( 2 )<= 6 ;
ScopeLut( 3 )<= 9 ;
ScopeLut( 4 )<= 12 ;
ScopeLut( 5 )<= 15 ;
ScopeLut( 6 )<= 18 ;
ScopeLut( 7 )<= 20 ;
ScopeLut( 8 )<= 22 ;
ScopeLut( 9 )<= 25 ;
ScopeLut( 10 )<= 26 ;
ScopeLut( 11 )<= 28 ;
ScopeLut( 12 )<= 29 ;
ScopeLut( 13 )<= 30 ;
ScopeLut( 14 )<= 31 ;
ScopeLut( 15 )<= 31 ;
ScopeLut( 16 )<= 31 ;
ScopeLut( 17 )<= 31 ;
ScopeLut( 18 )<= 31 ;
ScopeLut( 19 )<= 30 ;
ScopeLut( 20 )<= 29 ;
ScopeLut( 21 )<= 27 ;
ScopeLut( 22 )<= 25 ;
ScopeLut( 23 )<= 23 ;
ScopeLut( 24 )<= 21 ;
ScopeLut( 25 )<= 19 ;
ScopeLut( 26 )<= 16 ;
ScopeLut( 27 )<= 13 ;
ScopeLut( 28 )<= 10 ;
ScopeLut( 29 )<= 7 ;
ScopeLut( 30 )<= 4 ;
ScopeLut( 31 )<= 1 ;
ScopeLut( 32 )<= -2 ;
ScopeLut( 33 )<= -6 ;
ScopeLut( 34 )<= -9 ;
ScopeLut( 35 )<= -12 ;
ScopeLut( 36 )<= -15 ;
ScopeLut( 37 )<= -17 ;



ScopeLut( 38 )<= -20 ;
ScopeLut( 39 )<= -23 ;
ScopeLut( 40 )<= -25 ;
ScopeLut( 41 )<= -27 ;
ScopeLut( 42 )<= -28 ;
ScopeLut( 43 )<= -30 ;
ScopeLut( 44 )<= -31 ;
ScopeLut( 45 )<= -32 ;
ScopeLut( 46 )<= -32 ;
ScopeLut( 47 )<= -32 ;
ScopeLut( 48 )<= -32 ;
ScopeLut( 49 )<= -32 ;
ScopeLut( 50 )<= -31 ;
ScopeLut( 51 )<= -30 ;
ScopeLut( 52 )<= -29 ;
ScopeLut( 53 )<= -27 ;
ScopeLut( 54 )<= -25 ;
ScopeLut( 55 )<= -23 ;
ScopeLut( 56 )<= -21 ;
ScopeLut( 57 )<= -18 ;
ScopeLut( 58 )<= -15 ;
ScopeLut( 59 )<= -12 ;
ScopeLut( 60 )<= -9 ;
ScopeLut( 61 )<= -6 ;
ScopeLut( 62 )<= -3 ;
ScopeLut( 63 )<= 0 ;
ScopeLut( 64 )<= 3 ;
ScopeLut( 65 )<= 6 ;
ScopeLut( 66 )<= 9 ;
ScopeLut( 67 )<= 12 ;
ScopeLut( 68 )<= 15 ;
ScopeLut( 69 )<= 18 ;
ScopeLut( 70 )<= 21 ;
ScopeLut( 71 )<= 23 ;
ScopeLut( 72 )<= 25 ;
ScopeLut( 73 )<= 27 ;
ScopeLut( 74 )<= 28 ;
ScopeLut( 75 )<= 30 ;
ScopeLut( 76 )<= 30 ;
ScopeLut( 77 )<= 31 ;
ScopeLut( 78 )<= 31 ;
ScopeLut( 79 )<= 31 ;
ScopeLut( 80 )<= 31 ;
ScopeLut( 81 )<= 31 ;
ScopeLut( 82 )<= 30 ;
ScopeLut( 83 )<= 28 ;
ScopeLut( 84 )<= 27 ;
ScopeLut( 85 )<= 25 ;
ScopeLut( 86 )<= 23 ;
ScopeLut( 87 )<= 21 ;
ScopeLut( 88 )<= 18 ;
ScopeLut( 89 )<= 16 ;
ScopeLut( 90 )<= 13 ;
ScopeLut( 91 )<= 10 ;
ScopeLut( 92 )<= 7 ;
ScopeLut( 93 )<= 3 ;
ScopeLut( 94 )<= 0 ;
ScopeLut( 95 )<= -3 ;
ScopeLut( 96 )<= -6 ;
ScopeLut( 97 )<= -9 ;
ScopeLut( 98 )<= -12 ;
ScopeLut( 99 )<= -15 ;
ScopeLut( 100 )<= -18 ;
ScopeLut( 101 )<= -21 ;
ScopeLut( 102 )<= -23 ;
ScopeLut( 103 )<= -25 ;
ScopeLut( 104 )<= -27 ;
ScopeLut( 105 )<= -29 ;
ScopeLut( 106 )<= -30 ;
ScopeLut( 107 )<= -31 ;
ScopeLut( 108 )<= -32 ;
ScopeLut( 109 )<= -32 ;
ScopeLut( 110 )<= -32 ;
ScopeLut( 111 )<= -32 ;
ScopeLut( 112 )<= -32 ;
ScopeLut( 113 )<= -31 ;
ScopeLut( 114 )<= -30 ;
ScopeLut( 115 )<= -29 ;
ScopeLut( 116 )<= -27 ;
ScopeLut( 117 )<= -25 ;
ScopeLut( 118 )<= -23 ;



ScopeLut( 119 )<= -20 ;
ScopeLut( 120 )<= -18 ;
ScopeLut( 121 )<= -15 ;
ScopeLut( 122 )<= -12 ;
ScopeLut( 123 )<= -9 ;
ScopeLut( 124 )<= -6 ;
ScopeLut( 125 )<= -3 ;
ScopeLut( 126 )<= 1 ;
ScopeLut( 127 )<= 4 ;
ScopeLut( 128 )<= 7 ;
ScopeLut( 129 )<= 10 ;
ScopeLut( 130 )<= 13 ;
ScopeLut( 131 )<= 16 ;
ScopeLut( 132 )<= 18 ;
ScopeLut( 133 )<= 21 ;
ScopeLut( 134 )<= 23 ;
ScopeLut( 135 )<= 25 ;
ScopeLut( 136 )<= 27 ;
ScopeLut( 137 )<= 28 ;
ScopeLut( 138 )<= 30 ;
ScopeLut( 139 )<= 31 ;
ScopeLut( 140 )<= 31 ;
ScopeLut( 141 )<= 31 ;
ScopeLut( 142 )<= 31 ;
ScopeLut( 143 )<= 31 ;
ScopeLut( 144 )<= 30 ;
ScopeLut( 145 )<= 29 ;
ScopeLut( 146 )<= 28 ;
ScopeLut( 147 )<= 27 ;
ScopeLut( 148 )<= 25 ;
ScopeLut( 149 )<= 23 ;
ScopeLut( 150 )<= 20 ;
ScopeLut( 151 )<= 18 ;
ScopeLut( 152 )<= 15 ;
ScopeLut( 153 )<= 12 ;
ScopeLut( 154 )<= 9 ;
ScopeLut( 155 )<= 6 ;
ScopeLut( 156 )<= 3 ;
ScopeLut( 157 )<= 0 ;
ScopeLut( 158 )<= -3 ;
ScopeLut( 159 )<= -7 ;
ScopeLut( 160 )<= -10 ;
ScopeLut( 161 )<= -13 ;
ScopeLut( 162 )<= -16 ;
ScopeLut( 163 )<= -18 ;
ScopeLut( 164 )<= -21 ;
ScopeLut( 165 )<= -23 ;
ScopeLut( 166 )<= -25 ;
ScopeLut( 167 )<= -27 ;
ScopeLut( 168 )<= -29 ;
ScopeLut( 169 )<= -30 ;
ScopeLut( 170 )<= -31 ;
ScopeLut( 171 )<= -32 ;
ScopeLut( 172 )<= -32 ;
ScopeLut( 173 )<= -32 ;
ScopeLut( 174 )<= -32 ;
ScopeLut( 175 )<= -32 ;
ScopeLut( 176 )<= -31 ;
ScopeLut( 177 )<= -30 ;
ScopeLut( 178 )<= -28 ;
ScopeLut( 179 )<= -27 ;
ScopeLut( 180 )<= -25 ;
ScopeLut( 181 )<= -22 ;
ScopeLut( 182 )<= -20 ;
ScopeLut( 183 )<= -17 ;
ScopeLut( 184 )<= -14 ;
ScopeLut( 185 )<= -11 ;
ScopeLut( 186 )<= -8 ;
ScopeLut( 187 )<= -5 ;
ScopeLut( 188 )<= -2 ;
ScopeLut( 189 )<= 1 ;
ScopeLut( 190 )<= 4 ;
ScopeLut( 191 )<= 7 ;
ScopeLut( 192 )<= 10 ;
ScopeLut( 193 )<= 13 ;
ScopeLut( 194 )<= 16 ;
ScopeLut( 195 )<= 19 ;
ScopeLut( 196 )<= 21 ;
ScopeLut( 197 )<= 24 ;
ScopeLut( 198 )<= 26 ;
ScopeLut( 199 )<= 27 ;



ScopeLut( 200 )<= 29 ;
ScopeLut( 201 )<= 30 ;
ScopeLut( 202 )<= 31 ;
ScopeLut( 203 )<= 31 ;
ScopeLut( 204 )<= 31 ;
ScopeLut( 205 )<= 31 ;
ScopeLut( 206 )<= 31 ;
ScopeLut( 207 )<= 30 ;
ScopeLut( 208 )<= 29 ;
ScopeLut( 209 )<= 28 ;
ScopeLut( 210 )<= 26 ;
ScopeLut( 211 )<= 24 ;
ScopeLut( 212 )<= 22 ;
ScopeLut( 213 )<= 20 ;
ScopeLut( 214 )<= 17 ;
ScopeLut( 215 )<= 15 ;
ScopeLut( 216 )<= 12 ;
ScopeLut( 217 )<= 9 ;
ScopeLut( 218 )<= 6 ;
ScopeLut( 219 )<= 2 ;
ScopeLut( 220 )<= -1 ;
ScopeLut( 221 )<= -4 ;
ScopeLut( 222 )<= -7 ;
ScopeLut( 223 )<= -10 ;
ScopeLut( 224 )<= -13 ;
ScopeLut( 225 )<= -16 ;
ScopeLut( 226 )<= -19 ;
ScopeLut( 227 )<= -21 ;
ScopeLut( 228 )<= -24 ;
ScopeLut( 229 )<= -26 ;
ScopeLut( 230 )<= -28 ;
ScopeLut( 231 )<= -29 ;
ScopeLut( 232 )<= -30 ;
ScopeLut( 233 )<= -31 ;
ScopeLut( 234 )<= -32 ;
ScopeLut( 235 )<= -32 ;
ScopeLut( 236 )<= -32 ;
ScopeLut( 237 )<= -32 ;
ScopeLut( 238 )<= -32 ;
ScopeLut( 239 )<= -31 ;
ScopeLut( 240 )<= -29 ;
ScopeLut( 241 )<= -28 ;
ScopeLut( 242 )<= -26 ;
ScopeLut( 243 )<= -24 ;
ScopeLut( 244 )<= -22 ;
ScopeLut( 245 )<= -19 ;
ScopeLut( 246 )<= -17 ;
ScopeLut( 247 )<= -14 ;
ScopeLut( 248 )<= -11 ;
ScopeLut( 249 )<= -8 ;
ScopeLut( 250 )<= -5 ;
ScopeLut( 251 )<= -2 ;
ScopeLut( 252 )<= 2 ;
ScopeLut( 253 )<= 5 ;
ScopeLut( 254 )<= 8 ;
ScopeLut( 255 )<= 11 ;

end RTL;

Clock Gen

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;
LIBRARY ieee ;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all; 

entity ClockGen is

port
(



Clock50 : in std_logic;
nReset : in std_logic;

Clock4K : out std_logic;
Clock1K : out std_logic;
ClockArb : out std_logic

);

end ClockGen;

architecture RTL of ClockGen is
signal ClockGen :std_logic_vector (3 downto 0);
signal ClockDiv :std_logic_vector (12 downto 0);

begin
process (nReset,Clock50)

begin
if (nReset ='0') then 

ClockGen <= "0000";
ClockDiv <= "0000000000000";
Clock4K <='0';
Clock1K <='0';

   elsif (rising_edge (Clock50)) then
ClockDiv <= ClockDiv + '1';
Clock1K<=ClockGen(2);
Clock4K <= ClockGen(0);

if (ClockDiv = "1100001101010") then
ClockDiv <= "0000000000000";
ClockGen <= ClockGen + '1';

end if;
end if;

end process;

end RTL;

Display System

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
LIBRARY ieee ;
use ieee.std_logic_unsigned.all;

entity DisplaySystem is

port
(
--global

Clock50 : in std_logic;  -- might get a faster ext clock later!
clock27 : in std_logic;
nReset : in std_logic;

--vga
H_Sync  : out std_logic;
V_Sync : out std_logic;
RedOut : out std_logic_vector(3 downto 0);
GreenOut : out std_logic_vector(3 downto 0);
BlueOut : out std_logic_vector(3 downto 0);

-- system interface
--interface from rest of system  {TBA}

-- system interface
--interface from rest of system  {TBA}
SpecAmplitude : in std_logic_vector (7 downto 0);
SpecStrobe : in  std_logic;  -- strobe the value in. might not be totally 

necessary
SpecSweep : in  std_logic;  -- probably only as an overide, should be 

automatic?
SpecReset : in  std_logic; -- as opposed to global, might use for 

pause/restart

--Scope
ScopeAmplitude : in std_logic;
ScopeStrobe : in std_logic;  -- strobe the value in. might not be totally 

necessary



ScopeSweep : in std_logic;  -- probably only as an overide, should be 
automatic?

ScopeReset : in std_logic -- as opposed to global, might use for 
pause/restart

);
end DisplaySystem;

architecture RTL of DisplaySystem is

signal FreqBin : std_logic_vector (4 downto 0);
signal TimeSlot :  std_logic_vector (7 downto 0);
signal Power : std_logic_vector (7 downto 0);
signal WritePower :  std_logic;
signal Scroll :  std_logic;
signal DisplayReady : std_logic;

component Vgablock is

port (
Clock50 : in std_logic;  -- might get a faster ext clock later!

clock27 : in std_logic;
nReset : in std_logic;

H_Sync  : out std_logic;
V_Sync : out std_logic;
RedOut : out std_logic_vector(3 downto 0);
GreenOut : out std_logic_vector(3 downto 0);
BlueOut : out std_logic_vector(3 downto 0);

-- system interface
--interface from rest of system  {TBA}
SpecAmplitude : in std_logic_vector (7 downto 0);
SpecStrobe : in  std_logic;  -- strobe the value in. might not be totally necessary
SpecSweep : in  std_logic;  -- probably only as an overide, should be automatic?
SpecReset : in  std_logic; -- as opposed to global, might use for pause/restart

--Scope
ScopeAmplitude : in std_logic;
ScopeStrobe : in std_logic;  -- strobe the value in. might not be totally 

necessary
ScopeSweep : in std_logic;  -- probably only as an overide, should be 

automatic?
ScopeReset : in std_logic -- as opposed to global, might use for 

pause/restart

);
end component;

begin

vgablockinst : Vgablock
port map
(

Clock50 => Clock50 ,
clock27 => clock27 ,
nReset => nReset,

H_Sync  => H_Sync ,
V_Sync => V_Sync,
RedOut => RedOut,
GreenOut =>GreenOut ,
BlueOut => BlueOut,

SpecAmplitude => SpecAmplitude,
SpecStrobe => SpecStrobe,
SpecSweep => SpecSweep,
SpecReset => SpecReset,

ScopeAmplitude => ScopeAmplitude ,
ScopeStrobe => ScopeStrobe,  -- strobe the value in. might not be totally 

necessary
ScopeSweep => ScopeSweep,  -- probably only as an overide, should be 

automatic?
ScopeReset => ScopeReset -- a

);



end RTL;

Display Ram

-- megafunction wizard: %RAM: 2-PORT%
-- GENERATION: STANDARD
-- VERSION: WM1.0
-- MODULE: altsyncram 

-- ============================================================
-- File Name: DisplayRam.vhd
-- Megafunction Name(s):
-- altsyncram
--
-- Simulation Library Files(s):
-- altera_mf
-- ============================================================
-- ************************************************************
-- THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!
--
-- 11.1 Build 259 01/25/2012 SP 2 SJ Web Edition
-- ************************************************************

--Copyright (C) 1991-2011 Altera Corporation
--Your use of Altera Corporation's design tools, logic functions 
--and other software and tools, and its AMPP partner logic 
--functions, and any output files from any of the foregoing 
--(including device programming or simulation files), and any 
--associated documentation or information are expressly subject 
--to the terms and conditions of the Altera Program License 
--Subscription Agreement, Altera MegaCore Function License 
--Agreement, or other applicable license agreement, including, 
--without limitation, that your use is for the sole purpose of 
--programming logic devices manufactured by Altera and sold by 
--Altera or its authorized distributors.  Please refer to the 
--applicable agreement for further details.

LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY altera_mf;
USE altera_mf.all;

ENTITY DisplayRam IS
PORT
(

clock : IN STD_LOGIC  := '1';
data : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
rdaddress : IN STD_LOGIC_VECTOR (12 DOWNTO 0);
wraddress : IN STD_LOGIC_VECTOR (12 DOWNTO 0);
wren : IN STD_LOGIC  := '0';
q : OUT STD_LOGIC_VECTOR (7 DOWNTO 0)

);
END DisplayRam;

ARCHITECTURE SYN OF displayram IS

SIGNAL sub_wire0 : STD_LOGIC_VECTOR (7 DOWNTO 0);

COMPONENT altsyncram
GENERIC (

address_reg_b : STRING;
clock_enable_input_a : STRING;
clock_enable_input_b : STRING;
clock_enable_output_a : STRING;



clock_enable_output_b : STRING;
intended_device_family : STRING;
lpm_type : STRING;
numwords_a : NATURAL;
numwords_b : NATURAL;
operation_mode : STRING;
outdata_aclr_b : STRING;
outdata_reg_b : STRING;
power_up_uninitialized : STRING;
read_during_write_mode_mixed_ports : STRING;
widthad_a : NATURAL;
widthad_b : NATURAL;
width_a : NATURAL;
width_b : NATURAL;
width_byteena_a : NATURAL

);
PORT (

address_a : IN STD_LOGIC_VECTOR (12 DOWNTO 0);
clock0 : IN STD_LOGIC ;
data_a : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
q_b : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
wren_a : IN STD_LOGIC ;
address_b : IN STD_LOGIC_VECTOR (12 DOWNTO 0)

);
END COMPONENT;

BEGIN
q    <= sub_wire0(7 DOWNTO 0);

altsyncram_component : altsyncram
GENERIC MAP (

address_reg_b => "CLOCK0",
clock_enable_input_a => "BYPASS",
clock_enable_input_b => "BYPASS",
clock_enable_output_a => "BYPASS",
clock_enable_output_b => "BYPASS",
intended_device_family => "Cyclone II",
lpm_type => "altsyncram",
numwords_a => 8192,
numwords_b => 8192,
operation_mode => "DUAL_PORT",
outdata_aclr_b => "NONE",
outdata_reg_b => "CLOCK0",
power_up_uninitialized => "FALSE",
read_during_write_mode_mixed_ports => "OLD_DATA",
widthad_a => 13,
widthad_b => 13,
width_a => 8,
width_b => 8,
width_byteena_a => 1

)
PORT MAP (

address_a => wraddress,
clock0 => clock,
data_a => data,
wren_a => wren,
address_b => rdaddress,
q_b => sub_wire0

);

END SYN;

-- ============================================================
-- CNX file retrieval info
-- ============================================================
-- Retrieval info: PRIVATE: ADDRESSSTALL_A NUMERIC "0"
-- Retrieval info: PRIVATE: ADDRESSSTALL_B NUMERIC "0"
-- Retrieval info: PRIVATE: BYTEENA_ACLR_A NUMERIC "0"
-- Retrieval info: PRIVATE: BYTEENA_ACLR_B NUMERIC "0"
-- Retrieval info: PRIVATE: BYTE_ENABLE_A NUMERIC "0"
-- Retrieval info: PRIVATE: BYTE_ENABLE_B NUMERIC "0"
-- Retrieval info: PRIVATE: BYTE_SIZE NUMERIC "8"
-- Retrieval info: PRIVATE: BlankMemory NUMERIC "1"
-- Retrieval info: PRIVATE: CLOCK_ENABLE_INPUT_A NUMERIC "0"
-- Retrieval info: PRIVATE: CLOCK_ENABLE_INPUT_B NUMERIC "0"
-- Retrieval info: PRIVATE: CLOCK_ENABLE_OUTPUT_A NUMERIC "0"
-- Retrieval info: PRIVATE: CLOCK_ENABLE_OUTPUT_B NUMERIC "0"
-- Retrieval info: PRIVATE: CLRdata NUMERIC "0"
-- Retrieval info: PRIVATE: CLRq NUMERIC "0"



-- Retrieval info: PRIVATE: CLRrdaddress NUMERIC "0"
-- Retrieval info: PRIVATE: CLRrren NUMERIC "0"
-- Retrieval info: PRIVATE: CLRwraddress NUMERIC "0"
-- Retrieval info: PRIVATE: CLRwren NUMERIC "0"
-- Retrieval info: PRIVATE: Clock NUMERIC "0"
-- Retrieval info: PRIVATE: Clock_A NUMERIC "0"
-- Retrieval info: PRIVATE: Clock_B NUMERIC "0"
-- Retrieval info: PRIVATE: ECC NUMERIC "0"
-- Retrieval info: PRIVATE: ECC_PIPELINE_STAGE NUMERIC "0"
-- Retrieval info: PRIVATE: IMPLEMENT_IN_LES NUMERIC "0"
-- Retrieval info: PRIVATE: INDATA_ACLR_B NUMERIC "0"
-- Retrieval info: PRIVATE: INDATA_REG_B NUMERIC "0"
-- Retrieval info: PRIVATE: INIT_FILE_LAYOUT STRING "PORT_B"
-- Retrieval info: PRIVATE: INIT_TO_SIM_X NUMERIC "0"
-- Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone II"
-- Retrieval info: PRIVATE: JTAG_ENABLED NUMERIC "0"
-- Retrieval info: PRIVATE: JTAG_ID STRING "NONE"
-- Retrieval info: PRIVATE: MAXIMUM_DEPTH NUMERIC "0"
-- Retrieval info: PRIVATE: MEMSIZE NUMERIC "65536"
-- Retrieval info: PRIVATE: MEM_IN_BITS NUMERIC "0"
-- Retrieval info: PRIVATE: MIFfilename STRING ""
-- Retrieval info: PRIVATE: OPERATION_MODE NUMERIC "2"
-- Retrieval info: PRIVATE: OUTDATA_ACLR_B NUMERIC "0"
-- Retrieval info: PRIVATE: OUTDATA_REG_B NUMERIC "1"
-- Retrieval info: PRIVATE: RAM_BLOCK_TYPE NUMERIC "0"
-- Retrieval info: PRIVATE: READ_DURING_WRITE_MODE_MIXED_PORTS NUMERIC "1"
-- Retrieval info: PRIVATE: READ_DURING_WRITE_MODE_PORT_A NUMERIC "3"
-- Retrieval info: PRIVATE: READ_DURING_WRITE_MODE_PORT_B NUMERIC "3"
-- Retrieval info: PRIVATE: REGdata NUMERIC "1"
-- Retrieval info: PRIVATE: REGq NUMERIC "1"
-- Retrieval info: PRIVATE: REGrdaddress NUMERIC "1"
-- Retrieval info: PRIVATE: REGrren NUMERIC "1"
-- Retrieval info: PRIVATE: REGwraddress NUMERIC "1"
-- Retrieval info: PRIVATE: REGwren NUMERIC "1"
-- Retrieval info: PRIVATE: SYNTH_WRAPPER_GEN_POSTFIX STRING "0"
-- Retrieval info: PRIVATE: USE_DIFF_CLKEN NUMERIC "0"
-- Retrieval info: PRIVATE: UseDPRAM NUMERIC "1"
-- Retrieval info: PRIVATE: VarWidth NUMERIC "0"
-- Retrieval info: PRIVATE: WIDTH_READ_A NUMERIC "8"
-- Retrieval info: PRIVATE: WIDTH_READ_B NUMERIC "8"
-- Retrieval info: PRIVATE: WIDTH_WRITE_A NUMERIC "8"
-- Retrieval info: PRIVATE: WIDTH_WRITE_B NUMERIC "8"
-- Retrieval info: PRIVATE: WRADDR_ACLR_B NUMERIC "0"
-- Retrieval info: PRIVATE: WRADDR_REG_B NUMERIC "0"
-- Retrieval info: PRIVATE: WRCTRL_ACLR_B NUMERIC "0"
-- Retrieval info: PRIVATE: enable NUMERIC "0"
-- Retrieval info: PRIVATE: rden NUMERIC "0"
-- Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all
-- Retrieval info: CONSTANT: ADDRESS_REG_B STRING "CLOCK0"
-- Retrieval info: CONSTANT: CLOCK_ENABLE_INPUT_A STRING "BYPASS"
-- Retrieval info: CONSTANT: CLOCK_ENABLE_INPUT_B STRING "BYPASS"
-- Retrieval info: CONSTANT: CLOCK_ENABLE_OUTPUT_A STRING "BYPASS"
-- Retrieval info: CONSTANT: CLOCK_ENABLE_OUTPUT_B STRING "BYPASS"
-- Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone II"
-- Retrieval info: CONSTANT: LPM_TYPE STRING "altsyncram"
-- Retrieval info: CONSTANT: NUMWORDS_A NUMERIC "8192"
-- Retrieval info: CONSTANT: NUMWORDS_B NUMERIC "8192"
-- Retrieval info: CONSTANT: OPERATION_MODE STRING "DUAL_PORT"
-- Retrieval info: CONSTANT: OUTDATA_ACLR_B STRING "NONE"
-- Retrieval info: CONSTANT: OUTDATA_REG_B STRING "CLOCK0"
-- Retrieval info: CONSTANT: POWER_UP_UNINITIALIZED STRING "FALSE"
-- Retrieval info: CONSTANT: READ_DURING_WRITE_MODE_MIXED_PORTS STRING "OLD_DATA"
-- Retrieval info: CONSTANT: WIDTHAD_A NUMERIC "13"
-- Retrieval info: CONSTANT: WIDTHAD_B NUMERIC "13"
-- Retrieval info: CONSTANT: WIDTH_A NUMERIC "8"
-- Retrieval info: CONSTANT: WIDTH_B NUMERIC "8"
-- Retrieval info: CONSTANT: WIDTH_BYTEENA_A NUMERIC "1"
-- Retrieval info: USED_PORT: clock 0 0 0 0 INPUT VCC "clock"
-- Retrieval info: USED_PORT: data 0 0 8 0 INPUT NODEFVAL "data[7..0]"
-- Retrieval info: USED_PORT: q 0 0 8 0 OUTPUT NODEFVAL "q[7..0]"
-- Retrieval info: USED_PORT: rdaddress 0 0 13 0 INPUT NODEFVAL "rdaddress[12..0]"
-- Retrieval info: USED_PORT: wraddress 0 0 13 0 INPUT NODEFVAL "wraddress[12..0]"
-- Retrieval info: USED_PORT: wren 0 0 0 0 INPUT GND "wren"
-- Retrieval info: CONNECT: @address_a 0 0 13 0 wraddress 0 0 13 0
-- Retrieval info: CONNECT: @address_b 0 0 13 0 rdaddress 0 0 13 0
-- Retrieval info: CONNECT: @clock0 0 0 0 0 clock 0 0 0 0
-- Retrieval info: CONNECT: @data_a 0 0 8 0 data 0 0 8 0
-- Retrieval info: CONNECT: @wren_a 0 0 0 0 wren 0 0 0 0
-- Retrieval info: CONNECT: q 0 0 8 0 @q_b 0 0 8 0
-- Retrieval info: GEN_FILE: TYPE_NORMAL DisplayRam.vhd TRUE
-- Retrieval info: GEN_FILE: TYPE_NORMAL DisplayRam.inc FALSE



-- Retrieval info: GEN_FILE: TYPE_NORMAL DisplayRam.cmp TRUE
-- Retrieval info: GEN_FILE: TYPE_NORMAL DisplayRam.bsf FALSE
-- Retrieval info: GEN_FILE: TYPE_NORMAL DisplayRam_inst.vhd TRUE
-- Retrieval info: LIB_FILE: altera_mf

FFT Block
-- megafunction wizard: %FFT v11.1%
-- GENERATION: XML

-- ============================================================
-- Megafunction Name(s):
-- asj_fft_sglstream_fft_111
-- ============================================================
-- Generated by FFT 11.1 [Altera, IP Toolbench 1.3.0 Build 259]
-- ************************************************************
-- THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!
-- ************************************************************
-- Copyright (C) 1991-2003 Altera Corporation
-- Any megafunction design, and related net list (encrypted or decrypted),
-- support information, device programming or simulation file, and any other
-- associated documentation or information provided by Altera or a partner
-- under Altera's Megafunction Partnership Program may be used only to
-- program PLD devices (but not masked PLD devices) from Altera.  Any other
-- use of such megafunction design, net list, support information, device
-- programming or simulation file, or any other related documentation or
-- information is prohibited for any other purpose, including, but not
-- limited to modification, reverse engineering, de-compiling, or use with
-- any other silicon devices, unless such use is explicitly licensed under
-- a separate agreement with Altera or a megafunction partner.  Title to
-- the intellectual property, including patents, copyrights, trademarks,
-- trade secrets, or maskworks, embodied in any such megafunction design,
-- net list, support information, device programming or simulation file, or
-- any other related documentation or information provided by Altera or a
-- megafunction partner, remains with Altera, the megafunction partner, or
-- their respective licensors.  No other licenses, including any licenses
-- needed under any third party's intellectual property, are provided herein.

library IEEE;
use IEEE.std_logic_1164.all;
library fft_lib;
use fft_lib.fft_pack_fft_111.all;

ENTITY FFTBlock IS
PORT (

clk : IN STD_LOGIC;
reset_n : IN STD_LOGIC;
inverse : IN STD_LOGIC;
sink_valid : IN STD_LOGIC;
sink_sop : IN STD_LOGIC;
sink_eop : IN STD_LOGIC;
sink_real : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
sink_imag : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
sink_error : IN STD_LOGIC_VECTOR (1 DOWNTO 0);
source_ready : IN STD_LOGIC;
sink_ready : OUT STD_LOGIC;
source_error : OUT STD_LOGIC_VECTOR (1 DOWNTO 0);
source_sop : OUT STD_LOGIC;
source_eop : OUT STD_LOGIC;
source_valid : OUT STD_LOGIC;
source_exp : OUT STD_LOGIC_VECTOR (5 DOWNTO 0);
source_real : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
source_imag : OUT STD_LOGIC_VECTOR (7 DOWNTO 0)

);
END FFTBlock;

ARCHITECTURE SYN OF FFTBlock IS

COMPONENT asj_fft_sglstream_fft_111
GENERIC (

nps : NATURAL;
bfp : NATURAL;
nume : NATURAL;
mpr : NATURAL;



twr : NATURAL;
bpr : NATURAL;
bpb : NATURAL;
fpr : NATURAL;
mram : NATURAL;
m512 : NATURAL;
mult_type : NATURAL;
mult_imp : NATURAL;
dsp_arch : NATURAL;
srr : STRING;
rfs1 : STRING;
rfs2 : STRING;
rfs3 : STRING;
rfc1 : STRING;
rfc2 : STRING;
rfc3 : STRING

);
PORT (

clk : IN STD_LOGIC;
reset_n : IN STD_LOGIC;
inverse : IN STD_LOGIC;
sink_valid : IN STD_LOGIC;
sink_sop : IN STD_LOGIC;
sink_eop : IN STD_LOGIC;
sink_real : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
sink_imag : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
sink_error : IN STD_LOGIC_VECTOR (1 DOWNTO 0);
source_ready : IN STD_LOGIC;
sink_ready : OUT STD_LOGIC;
source_error : OUT STD_LOGIC_VECTOR (1 DOWNTO 0);
source_sop : OUT STD_LOGIC;
source_eop : OUT STD_LOGIC;
source_valid : OUT STD_LOGIC;
source_exp : OUT STD_LOGIC_VECTOR (5 DOWNTO 0);
source_real : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
source_imag : OUT STD_LOGIC_VECTOR (7 DOWNTO 0)

);

END COMPONENT;

BEGIN

asj_fft_sglstream_fft_111_inst : asj_fft_sglstream_fft_111
GENERIC MAP (

nps => 64,
bfp => 1,
nume => 1,
mpr => 8,
twr => 8,
bpr => 16,
bpb => 4,
fpr => 4,
mram => 0,
m512 => 0,
mult_type => 1,
mult_imp => 0,
dsp_arch => 0,
srr => "AUTO_SHIFT_REGISTER_RECOGNITION=OFF",
rfs1 => "FFTBlock_1n64sin.hex",
rfs2 => "FFTBlock_2n64sin.hex",
rfs3 => "FFTBlock_3n64sin.hex",
rfc1 => "FFTBlock_1n64cos.hex",
rfc2 => "FFTBlock_2n64cos.hex",
rfc3 => "FFTBlock_3n64cos.hex"

)
PORT MAP (

clk  =>  clk,
reset_n  =>  reset_n,
inverse  =>  inverse,
sink_valid  =>  sink_valid,
sink_sop  =>  sink_sop,
sink_eop  =>  sink_eop,
sink_real  =>  sink_real,
sink_imag  =>  sink_imag,
sink_ready  =>  sink_ready,
sink_error  =>  sink_error,
source_error  =>  source_error,
source_ready  =>  source_ready,
source_sop  =>  source_sop,
source_eop  =>  source_eop,
source_valid  =>  source_valid,



source_exp  =>  source_exp,
source_real  =>  source_real,
source_imag  =>  source_imag

);

END SYN;

-- =========================================================
-- FFT Wizard Data
-- ===============================
-- DO NOT EDIT FOLLOWING DATA
-- @Altera, IP Toolbench@
-- Warning: If you modify this section, FFT Wizard may not be able to reproduce your chosen 
configuration.
-- 
-- Retrieval info: <?xml version="1.0"?>
-- Retrieval info: <MEGACORE title="FFT MegaCore Function"  version="11.1"  build="259"  
iptb_version="1.3.0 Build 259"  format_version="120" >
-- Retrieval info:  <NETLIST_SECTION class="altera.ipbu.flowbase.netlist.model.FFTModelClass"  
active_core="asj_fft_sglstream_fft_111" >
-- Retrieval info:   <STATIC_SECTION>
-- Retrieval info:    <PRIVATES>
-- Retrieval info:     <NAMESPACE name = "parameterization">
-- Retrieval info:      <PRIVATE name = "use_mem" value="1"  type="BOOLEAN"  enable="1" />
-- Retrieval info:      <PRIVATE name = "mem_type" value="M512"  type="STRING"  enable="1" />
-- Retrieval info:      <PRIVATE name = "DEVICE" value="Cyclone II"  type="STRING"  enable="1" />
-- Retrieval info:      <PRIVATE name = "NPS" value="64"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "MPR" value="8"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "TWR" value="8"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "ARCH" value="0"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "NUME" value="1"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "ENGINE_THROUGHPUT" value="4"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "BFP" value="1"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "MULT_TYPE" value="1"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "MULT_IMP" value="0"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "MEGA" value="0"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "M512" value="1"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "LOGIC_IN_RAM" value="0"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "NUM_LE" value="2430"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "NUM_M4K" value="22"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "NUM_MEGA" value="0"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "NUM_M512" value="0"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "NUM_DSP" value="12"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "NUM_CALC_CYCLES" value="64"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "NUM_BLK_THROUGHPUT_CYCLES" value="64"  type="INTEGER"  
enable="1" />
-- Retrieval info:      <PRIVATE name = "rfs1" value="romfile_1024.hex"  type="STRING"  
enable="1" />
-- Retrieval info:      <PRIVATE name = "rfs2" value="romfile_1024.hex"  type="STRING"  
enable="1" />
-- Retrieval info:      <PRIVATE name = "rfs3" value="romfile_1024.hex"  type="STRING"  
enable="1" />
-- Retrieval info:      <PRIVATE name = "rfc1" value="romfile_1024.hex"  type="STRING"  
enable="1" />
-- Retrieval info:      <PRIVATE name = "rfc2" value="romfile_1024.hex"  type="STRING"  
enable="1" />
-- Retrieval info:      <PRIVATE name = "rfc3" value="romfile_1024.hex"  type="STRING"  
enable="1" />
-- Retrieval info:      <PRIVATE name = "ENA" value="0"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "NUM_MEMBITS" value="90112"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "INPUT_ORDER" value="1"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "OUTPUT_ORDER" value="0"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "REPRESENTATION" value="0"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "ENGINE_ONLY" value="0"  type="INTEGER"  enable="1" />
-- Retrieval info:      <PRIVATE name = "DSP_ARCH" value="0"  type="INTEGER"  enable="1" />
-- Retrieval info:     </NAMESPACE>
-- Retrieval info:     <NAMESPACE name = "simgen_enable">
-- Retrieval info:      <PRIVATE name = "language" value="VHDL"  type="STRING"  enable="1" />
-- Retrieval info:      <PRIVATE name = "enabled" value="1"  type="BOOLEAN"  enable="1" />
-- Retrieval info:     </NAMESPACE>
-- Retrieval info:     <NAMESPACE name = "simgen">
-- Retrieval info:      <PRIVATE name = "filename" value="FFTBlock.vho"  type="STRING"  
enable="1" />
-- Retrieval info:     </NAMESPACE>
-- Retrieval info:     <NAMESPACE name = "greybox">
-- Retrieval info:      <PRIVATE name = "filename" value="FFTBlock_syn.v"  type="STRING"  enable="1"
/>
-- Retrieval info:     </NAMESPACE>
-- Retrieval info:     <NAMESPACE name = "quartus_settings">



-- Retrieval info:      <PRIVATE name = "DEVICE" value="EP2C20F484C7"  type="STRING"  enable="1" />
-- Retrieval info:      <PRIVATE name = "FAMILY" value="Cyclone II"  type="STRING"  enable="1" />
-- Retrieval info:     </NAMESPACE>
-- Retrieval info:     <NAMESPACE name = "serializer"/>
-- Retrieval info:    </PRIVATES>
-- Retrieval info:    <FILES/>
-- Retrieval info:    <PORTS/>
-- Retrieval info:    <LIBRARIES/>
-- Retrieval info:   </STATIC_SECTION>
-- Retrieval info:  </NETLIST_SECTION>
-- Retrieval info: </MEGACORE>
-- =========================================================
-- RELATED_FILES: FFTBlock.vhd;
-- IPFS_FILES: FFTBlock.vho;
-- =========================================================

FFT Controller

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
LIBRARY ieee ;
use ieee.std_logic_unsigned.all;

entity FFTController is

port (
Clock50 : in std_logic;  -- might get a faster ext clock later!
nReset : in std_logic;

ECG_Data : in std_logic_vector(7 downto 0);
ECG_Clock : in std_logic;
DataValid : in std_logic;

RealOutData : out std_logic_vector (7 downto 0);
RealExp : out std_logic_vector (5 downto 0);

ImagOutData : out std_logic_vector (7 downto 0);
sink_eopx : out std_logic;

DataOutGood : out std_logic

);

end FFTController;

architecture RTL of FFTController is

signal clk : STD_LOGIC;
signal reset_n :  STD_LOGIC;
signal inverse :  STD_LOGIC;
signal sink_valid :  STD_LOGIC;
signal sink_sop : STD_LOGIC;
signal sink_eop : STD_LOGIC;
signal sink_real : STD_LOGIC_VECTOR (7 DOWNTO 0);
signal sink_imag : STD_LOGIC_VECTOR (7 DOWNTO 0);
signal sink_error : STD_LOGIC_VECTOR (1 DOWNTO 0);
signal source_ready : STD_LOGIC;
signal sink_ready :  STD_LOGIC;
signal source_error : STD_LOGIC_VECTOR (1 DOWNTO 0);
signal source_sop : STD_LOGIC;
signal source_eop : STD_LOGIC;
signal source_valid : STD_LOGIC;
signal source_exp :  STD_LOGIC_VECTOR (5 DOWNTO 0);
signal source_real :  STD_LOGIC_VECTOR (7 DOWNTO 0);
signal source_imag : STD_LOGIC_VECTOR (7 DOWNTO 0);
signal SourceContReady :  std_logic;
--signal DataOutGood : std_logic;

signal FFT_Clock : std_logic; -- derived from the ECG_clock, 



--Partition the control of the Avalon interface to seperate sink and source interfaces

component FFTSinkController is
port
(

Clock50 : in std_logic;  -- might get a faster ext clock later!
nReset : in std_logic;

ECG_Clock : in std_logic;  --sample clock
DataValid : in std_logic; -- system says its ready
sink_ready : in std_logic;  --FFT says its ready

sink_valid : out std_logic;  --is input to FFT from system
sink_sop : out std_logic;  -- inform FFT is start of packet
sink_eop : out std_logic; -- inform FFT is end of packet
FFT_Clock : out std_logic; -- derived from the ECG_clock, 

source_error : in STD_LOGIC_VECTOR (1 DOWNTO 0);
sink_error : out STD_LOGIC_VECTOR (1 DOWNTO 0)

);
end component;

component FFTSourceController is
port
(

Clock50 : in std_logic;  -- might get a faster ext clock later!
nReset : in std_logic;

ECG_Clock : in std_logic;
DataValid : in std_logic;
source_valid : in std_logic;
source_sop : in STD_LOGIC;
source_eop : in STD_LOGIC;

SourceContReady : out std_logic;
DataOutGood : out std_logic

);
end component;

component FFTBlock is

PORT (
clk : IN STD_LOGIC;
reset_n : IN STD_LOGIC;
inverse : IN STD_LOGIC;
sink_valid : IN STD_LOGIC;
sink_sop : IN STD_LOGIC;
sink_eop : IN STD_LOGIC;
sink_real : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
sink_imag : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
sink_error : IN STD_LOGIC_VECTOR (1 DOWNTO 0);
source_ready : IN STD_LOGIC;
sink_ready : OUT STD_LOGIC;
source_error : OUT STD_LOGIC_VECTOR (1 DOWNTO 0);
source_sop : OUT STD_LOGIC;
source_eop : OUT STD_LOGIC;
source_valid : OUT STD_LOGIC;
source_exp : OUT STD_LOGIC_VECTOR (5 DOWNTO 0);
source_real : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
source_imag : OUT STD_LOGIC_VECTOR (7 DOWNTO 0)

);

end component;

begin
inverse <= '0';
sink_imag <= "00000000";
sink_eopx<=sink_eop;

AvalonSink: FFTSinkController
port map 
(

Clock50 => Clock50,

nReset => nReset,



ECG_Clock  => ECG_Clock,  --sample clock

DataValid  =>DataValid  , -- system says its ready
sink_ready  => sink_ready,  --FFT says its ready

sink_valid  => sink_valid,  --is input to FFT from system
sink_sop  =>sink_sop ,  -- inform FFT is start of packet
sink_eop  =>sink_eop , -- inform FFT is end of packet
FFT_Clock  =>FFT_Clock,  -- derived from the ECG_clock, 
source_error => source_error,
sink_error=> sink_error

);
----------------------------------------
-----------------------------------------

AvalonSource : FFTSourceController
port map
(

Clock50 => Clock50,  -- might get a faster ext clock later!
nReset => nReset,

ECG_Clock => ECG_Clock,
DataValid =>DataValid ,
source_valid => source_valid,
source_sop => source_sop,
source_eop => source_eop,
SourceContReady => SourceContReady,
DataOutGood => DataOutGood

);

---
ThisFFT : FFTBlock 
port map
(

clk => FFT_Clock,
reset_n => nReset,
inverse => inverse,
sink_valid =>sink_valid ,
sink_sop => sink_sop,
sink_eop => sink_eop,
sink_real => ECG_Data,
sink_imag => sink_imag,
sink_error => sink_error,
source_ready => SourceContReady,
sink_ready => sink_ready,
source_error => source_error ,
source_sop => source_sop,
source_eop => source_eop,
source_valid => source_valid,
source_exp => RealExp,
source_real => RealOutData,
source_imag => ImagOutData

);

end RTL;

FFT Sink Controller

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
LIBRARY ieee ;
use ieee.std_logic_unsigned.all;

entity FFTSinkController is
port (

Clock50 : in std_logic;  -- might get a faster ext clock later!
nReset : in std_logic;
ECG_Clock : in std_logic;  --sample clock
DataValid : in std_logic; -- system says its ready
sink_ready : in std_logic;  --FFT says its ready



sink_valid : out std_logic;  --is input to FFT from system
sink_sop : out std_logic;  -- inform FFT is start of packet
sink_eop : out std_logic; -- inform FFT is end of packet
FFT_Clock : out std_logic; -- derived from the ECG_clock, 
source_error : in STD_LOGIC_VECTOR (1 DOWNTO 0);
sink_error : out STD_LOGIC_VECTOR (1 DOWNTO 0)

);
end FFTSinkController;

architecture RTL of FFTSinkController is

type FFT_SinkState is (InReset,NotReady,Ready,PrepareFirstPacket,SetSop,FirstByte,NextByteLow,
NextByteHi,WaitEop,SetEop,LastByte);

signal CurrentState : FFT_SinkState;
signal NextState : FFT_SinkState;
signal PacketCount : std_logic_vector (6 downto 0);
signal PacketCountFlag : std_logic;

begin

FFT_Clock<=ECG_Clock;
sink_error <= "00";

--------------------------------------------------
--------------------------------------------------

setSinkValid : process(nReset,DataValid,ECG_Clock)

begin 
if (nReset = '0') then

sink_valid <='0';
elsif (rising_edge (ECG_Clock)) then

sink_valid <= DataValid;
end if;

end process;

------------------------------------------
-------------------------------------------

--------------------------------------------------
--------------------------------------------------

Do_sink_sop : process(nReset,DataValid,PacketCount,ECG_Clock)

begin 
if (nReset = '0') then

sink_sop <='0';
elsif (rising_edge (ECG_Clock)) then

if ((PacketCount= "0000000") and (DataValid = '1') and (sink_ready = 
'1')) then

sink_sop <= '1';
else 

sink_sop <= '0';
end if;

end if;
end process;

------------------------------------------
-------------------------------------------

Do_sink_eop : process(nReset,ECG_Clock,PacketCount)

begin 
if (nReset = '0') then

sink_eop <='0';
elsif (rising_edge (ECG_Clock)) then

if ((PacketCount= "0111111") and (DataValid = '1') and (sink_ready = 
'1'))   then

sink_eop <= '1';
else 

sink_eop <= '0';
end if;

end if;
end process;

--------------------------------------------------
--------------------------------------------------

Do_DataCount : process(nReset,ECG_Clock)

begin 
if (nReset = '0') then

PacketCount <="0000000";
elsif (  (rising_edge (ECG_Clock)) and (DataValid = '1') and (sink_ready = 

'1'))  then



PacketCount <= PacketCount + '1';
if (PacketCount= "0111111") then

PacketCount <="0000000";
end if;

end if;
end process;

------------------------------------------
-------------------------------------------     

----------------------

end RTL;

FFT Source Controller

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
LIBRARY ieee ;
use ieee.std_logic_unsigned.all;

entity FFTSourceController is

port (

Clock50 : in std_logic;  -- might get a faster ext clock later!
nReset : in std_logic;

ECG_Clock : in std_logic;
DataValid : in std_logic;
source_valid : in std_logic;
source_sop : in STD_LOGIC;
source_eop : in STD_LOGIC;

SourceContReady : out std_logic;
DataOutGood : out std_logic  -- flags if in useful bit of data

);

end FFTSourceController;

architecture RTL of FFTSourceController is

signal DataCounter : std_logic_vector(6 downto 0);

begin

SourceContReady <= '1';
---------------------------------------
---------------------------------------
--ValidateData:process (nReset)

ValidateCounter : process (nReset,source_sop,ECG_Clock)
begin

if ( (nReset='0') or (source_sop='1')) then
DataCounter<="0000000";

elsif (rising_edge(ECG_Clock)) then
DataCounter<=DataCounter+1;

end if;

end process;

InformWhichHalf: process ( nReset,DataCounter)
begin

if ((nReset='0') or (DataCounter<"0100000")) then
DataOutGood<='1';

else
DataOutGood<='0';



end if;
end process;

 

----------------------------------------
----------------------------------------

end RTL;

Samos

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
LIBRARY ieee ;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all; 

entity Samos is 

port (
Clock50 : in std_logic;  -- might get a faster ext clock later!
nReset : in std_logic;
ECG_Clock : in std_logic;

DataGood : in std_logic;
RealIn : in std_logic_vector (7 downto 0);
ImagIn : in std_logic_vector (7 downto 0);

ExpIn : in std_logic_vector (5 downto 0);

ResultReady : out std_logic;
ResultOut : out std_logic_vector (8 downto 0);
ExpOut : out std_logic_vector (5 downto 0)

);

end Samos;

architecture RTL of Samos is

-- signals

signal SquareThis : integer range 0 to 255; -- input to multiplier
signal ThisSquared : integer range 0 to 65535;

signal RealSquared : integer range 0 to 65535;
signal ImagSquared : integer range 0 to 65535;

signal ResultSquared : integer range 0 to 131071; -- this is radicand as integer

signal ResultSquaredVector : std_logic_vector (16 downto 0);  -- this is radicand as vector 
ready to find root

signal ResultVector : std_logic_vector (8 downto 0);  -- 

signal RealReg : std_logic_vector (7 downto 0);
signal ImagReg : std_logic_vector (7 downto 0);

type PythagorasState is 
(InReset,WaitData,Debug0,SquareReal,Debug1,SquareImag,Debug2,AddThem,Debug3,GetRoot,Debug4,WaitResul
t,Debug5,PresentResult,Debug6);

signal CurrentState : PythagorasState;
signal NextState : PythagorasState;



-- signals to interface to square root

signal Square :  std_logic_vector (16 downto 0);  --sample clock
signal SquareStrobeIn :  std_logic; 
signal Root :  STD_LOGIC_VECTOR (8 DOWNTO 0); 
signal RootReady :  std_logic;

-- component-
component SquareRoot is
port (

Clock50 : in std_logic;  -- might get a faster ext clock later!
nReset : in std_logic;
Square : in std_logic_vector (16 downto 0);  --sample clock
SquareStrobeIn : in std_logic; 
Root : out STD_LOGIC_VECTOR (8 DOWNTO 0); 
RootReady : out std_logic

);

end Component;

begin
ExpOut <= ExpIn;
-------------------------------------
-- clock data in  on rising_edge of ECG_Clock
-------------------------------------
CaptureData : process (nReset,ECG_Clock)
begin

if (nReset ='0') then
RealReg <= X"00";
ImagReg <= X"00";

elsif (rising_edge (ECG_Clock)) then
RealReg <= RealIn;
ImagReg <= ImagIn;

end if;
end process;
-----------------------------------------
-----------------------------------------
--Clock data out on rising edge of main clock
-- there is something else for it to validate against
---------------------------------------
ClockDataOut:process (nReset,Clock50)
begin

if ((nReset ='0') or (DataGood  ='0'))then
ResultOut <="000000000";

elsif (rising_edge (Clock50)) then
ResultOut <= Root;

end if;
end process;
----------------------------------------------
-------------------
-- local multiplier used to square the 'sides'
------------------
Multiplier : process (SquareThis)
begin

ThisSquared <= SquareThis*SquareThis;
end process;
------------------------------------------
-- and thats it!!
-------------------------------------------

-----------------------------------------------
-----------------------------------------------

StateReset:process (nReset,Clock50)
begin

if (nReset ='0') then 
CurrentState <= InReset;

   elsif (rising_edge (Clock50)) then
CurrentState <= NextState;

end if;
end process;

------------------------------------------------
------------------------------------------------

process (CurrentState,DataGood,RootReady,ECG_Clock)

begin



--
(InReset,WaitData,Debug0,SquareReal,Debug1,SquareImag,Debug2,AddThem,Debug3,GetRoot,Debug4,WaitResul
t,Debug5,PresentResult,Debug6);

case CurrentState is
------------------------

when InReset => 
----------------------

NextState <= WaitData;
 ------------------------

when WaitData => 
if ((DataGood = '1') and (ECG_Clock = '1')) then

NextState <= Debug0;
else 

NextState <= WaitData;
end if;

 ------------------------
when Debug0 => 

NextState <= SquareReal;
 ------------------------

when SquareReal => 
NextState <= Debug1;

 ------------------------
when Debug1 =>

NextState <= SquareImag;
    ------------------------

 when SquareImag =>
NextState <= Debug2;

    ------------------------
 when Debug2 =>

NextState <= AddThem;
    ------------------------

 when AddThem =>
NextState <= Debug3;

    ------------------------
  ------------------------

when Debug3 => 
NextState <= GetRoot;

 ------------------------
when GetRoot =>

NextState <= Debug4;
    ------------------------

 when Debug4 =>
NextState <= WaitResult;

    ------------------------
 when WaitResult =>

if (RootReady = '1') then
NextState <= Debug5;

else 
NextState <= WaitResult;

end if;
------------------------

 when Debug5 =>
NextState <= PresentResult;

    ------------------------
    ------------------------

 when PresentResult =>
NextState <= Debug6;

------------------------
 when Debug6 =>

if (RootReady = '0') then
NextState <= WaitData;

else
NextState <= Debug6;

end if;
------------------------

end case;
end process;

-----------------------------------
-----------------------------------
process (CurrentState,Clock50)

begin

if (rising_edge (Clock50)) then
case CurrentState is

------------------------
when InReset => 

----------------------
ResultReady<= '0';



 ------------------------
when WaitData => 

 ------------------------
when Debug0 => 

SquareThis <= to_integer(unsigned(RealReg));
 ------------------------

when SquareReal => 
 RealSquared <= ThisSquared;

 ------------------------
when Debug1 =>

SquareThis <= to_integer(unsigned(ImagReg));
    ------------------------

 when SquareImag =>
ImagSquared <= ThisSquared;

    ------------------------
 when Debug2 =>

    ------------------------
 when AddThem =>

ResultSquared <= ImagSquared + RealSquared;
    ------------------------

  ------------------------
when Debug3 => 

Square <= std_logic_vector(to_unsigned(ResultSquared,17));
 ------------------------

when GetRoot =>
SquareStrobeIn <='1';

    ------------------------
 when Debug4 =>

SquareStrobeIn <='0';
 ------------------------

 when WaitResult =>
    ------------------------

 when Debug5 =>
    ------------------------

 when PresentResult =>
--ResultOut <= Root;

------------------------
 when Debug6 =>

ResultReady<= '1';  --
------------------------

end case;
end if;
end process;

SqrtInst : SquareRoot

port map

(
Clock50 => Clock50,   -- might get a faster ext clock later!
nReset => nReset,
Square => Square,  --sample clock
SquareStrobeIn => SquareStrobeIn,
Root => Root,
RootReady => RootReady

);

end RTL;

Square Root

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
LIBRARY ieee ;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all; 



entity SquareRoot is 

port (
Clock50 : in std_logic;  -- might get a faster ext clock later!
nReset : in std_logic;
Square : in std_logic_vector (16 downto 0);  --sample clock
SquareStrobeIn : in std_logic; 

Root : out STD_LOGIC_VECTOR (8 DOWNTO 0); 
RootReady : out std_logic

);

end SquareRoot;

architecture RTL of SquareRoot is

component RootIteration is 
port (

Clock50 : in std_logic;  -- might get a faster ext clock later!
nReset : in std_logic;
StrobeIn : in std_logic;
SquareIn : in std_logic_vector (16 downto 0);
IterateRootIn : in std_logic_vector (8 downto 0);  

SetThatBit : out std_logic; -- inform that that bit being tested is to

Finished : out std_logic; -- can terminate early
StrobeOut : out std_logic -- inform is ready

);

end component;

signal SquareReg : std_logic_vector (16 downto 0);

signal RootTempReg : std_logic_vector (8 downto 0);
signal RootReg : std_logic_vector (8 downto 0);

signal BitCount : integer range 0 to 8;

type StateType is 
(InReset,WaitData,LoadIteration,Iterate1,Iterate2,WaitResult,Process1,Process2,Process3,Process4,Don
e);
signal CurrentState : StateType;
signal NextState : StateType;

-- control signals to/from iterate block
signal IterateRoot : std_logic;
signal SetThatBit : std_logic;
signal Finished : std_logic;
signal IterationReady : std_logic;
signal RootDone : std_logic;
signal FlagTime : std_logic_vector( 4 downto 0);

begin 

-----------------------------------------------
-----------------------------------------------

StateReset:process (nReset,Clock50)
begin

if (nReset ='0') then 
CurrentState <= InReset;

   elsif (rising_edge (Clock50)) then
CurrentState <= NextState;

end if;
end process;

------------------------------------------------
------------------------------------------------
RootReady <= FlagTime(3);

--InReset,WaitData,LoadIteration,Iterate1,Iterate2,WaitResult,Process1,Process2,Done);
process (CurrentState,SquareStrobeIn,IterationReady,BitCount)

begin

case CurrentState is
------------------------

when InReset => 
----------------------



NextState <= WaitData;
 ------------------------

when WaitData => 
if (SquareStrobeIn = '1') then

NextState <= LoadIteration;
else 

NextState <= WaitData;
end if;

 ------------------------
when LoadIteration => 

NextState <= Iterate1;
 ------------------------

when Iterate1 => 
NextState <= Iterate2;

 ------------------------
when Iterate2 =>

NextState <= WaitResult;
    ------------------------

when WaitResult => 
if (IterationReady = '1') then

NextState <= Process1;
else 

NextState <= WaitResult;
end if;

 -----------------------
when Process1 => 

if ((BitCount = 0) or (Finished = '1')) then
NextState <= Done;

else 
NextState <= Process2;

end if;
----------------------

 ------------------------
when Process2 => 

NextState <= Process3;

---------------------
when Process3 =>

NextState <= Process4;

---------------------
when Process4 =>

NextState <= LoadIteration;
  -------------------------

when Done => 
NextState <= WaitData;

-------------------------
-------------------------

end case;

end process;
-----------------------------------
-----------------------------------

process (CurrentState,Clock50)

begin

if (rising_edge (Clock50)) then

case CurrentState is
------------------------

when InReset => 
----------------------

--NextState <= WaitData;
 ------------------------

when WaitData => 
RootDone <= '0';
SquareReg<= Square;
BitCount<= 8;
RootReg <= "000000000";
RootTempReg <= "100000000";

 ------------------------
when LoadIteration => 

IterateRoot <= '1';
 ------------------------

when Iterate1 => 



--NextState <= Iterate2;
 ------------------------

when Iterate2 =>
IterateRoot <= '0';

    ------------------------
when WaitResult => 

 -----------------------
when Process1 => 

RootReg(BitCount)<= SetThatBit;

----------------------
   ----------------------

when Process2 => 
RootTempReg <= RootReg;
if (BitCount > 0) then

BitCount <= BitCount -1;
end if;

---------------------
  -------------------------
  when Process3 => 

RootTempReg(BitCount) <= '1';

---------------------
  -------------------------
  when Process4 => 

---------------------
  -------------------------

when Done => 
Root<= RootReg;
RootDone<='1';

-------------------------
-------------------------

end case;
end if;

end process;
-----------------------------------
-----------------------------------
AnswerReady : process (nReset,Clock50,SquareStrobeIn,RootDone)
begin

if ((nReset= '0') or (SquareStrobeIn= '1')) then
FlagTime <= "00000";

elsif  (RootDone = '1') then 
FlagTime <= "00111";

else 
if (rising_edge (Clock50)) then

if ((FlagTime < "10000") and (FlagTime > "00011")) then
FlagTime <= FlagTime + '1';

end if;
end if;

end if;

end process;

RootIterationInst : RootIteration 
port map
(

Clock50 => Clock50,
nReset => nReset,
StrobeIn => IterateRoot,

SquareIn => SquareReg,
IterateRootIn => RootTempReg,

SetThatBit => SetThatBit,
Finished => Finished,

StrobeOut => IterationReady
);



end RTL;

Root Iteration

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
LIBRARY ieee ;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all; 

--library ieee;
--use ieee.std_logic_1164.all;
--use ieee.numeric_std.all;
entity RootIteration is 

port (
Clock50 : in std_logic;  -- might get a faster ext clock later!
nReset : in std_logic;
StrobeIn : in std_logic;
SquareIn : in std_logic_vector (16 downto 0);
IterateRootIn : in std_logic_vector (8 downto 0);  

SetThatBit : out std_logic; -- inform that that bit being tested is to
 

-- be set
Finished : out std_logic; -- if at some point the iteration happens to

--
be the root, then set this and everyone can 

--
go home early

StrobeOut : out std_logic -- inform is ready
);

end RootIteration;

architecture RTL of RootIteration is

signal SquareReg : std_logic_vector (16 downto 0);
signal RootReg : std_logic_vector (8 downto 0);

signal SquareInt : integer range 0 to 131071; --  
signal RootInt : integer range 0 to 511; --  

signal IterateResult : integer range 0 to 131071;

signal CalcDelay : std_logic_vector (4 downto 0);

begin 

SquareInt <= to_integer(unsigned(SquareReg));
RootInt <= to_integer(unsigned(RootReg));
StrobeOut <= CalcDelay(3);
-----------------------------------------
-----------------------------------------
DataCapture : process (nReset,StrobeIn)
begin

if (nReset = '0') then 
SquareReg <= "00000000000000000";
RootReg <= "000000000";

elsif (rising_edge(StrobeIn)) then 
SquareReg <= SquareIn;
RootReg <= IterateRootIn;

end if;
end process;
------------------------------------------
------------------------------------------
DelayAnswer : process (nReset,Clock50,StrobeIn)
begin

if ((nReset = '0') or ( StrobeIn = '1') )then 
CalcDelay<="00000";



elsif (rising_edge (Clock50) and (StrobeIn = '0')) then
if (CalcDelay < "10000") then

CalcDelay <= CalcDelay + 1;
end if;

end if;
end process;
---------------------------------------------
---------------------------------------------

---------------------------------------------
---------------------------------------------

Multiply : process (RootInt)
begin

IterateResult <= RootInt*RootInt;
end process;
---------------------------------------------
---------------------------------------------
Compare : process (IterateResult)
begin

if (IterateResult > SquareInt) then 
SetThatBit <= '0';
Finished <= '0';

elsif (IterateResult = SquareInt) then
SetThatBit <= '1';
Finished <= '1';

else
SetThatBit <= '1';
Finished <= '0';

end if;
end process;
----------------------------------------------
----------------------------------------------

end RTL;

Slice Buffer

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;--
LIBRARY ieee ;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all; 

entity SliceBuffer is 

port 
(

Clock50 : in std_logic;  -- might get a faster ext clock later!
nReset : in std_logic;
Clock4K : in std_logic;
Clock1K : in std_logic;  --sample clock
RawData : in std_logic_vector (7 downto 0); -- 
DataGood : in std_logic; -- inform this entity that data is valid
sink_eop : in std_logic; -- informing FFT is end of packet, and here to reset window 

index
Buffered_Data : out std_logic_vector (7 downto 0)  -- the data after window applied

);

end SliceBuffer;

architecture RTL of SliceBuffer is

signal LocalReset : std_logic;
signal ReadAddress : std_logic_vector (6 downto 0);
signal data : std_logic_vector (7 downto 0);
signal q : std_logic_vector (7 downto 0);
signal WriteToRam : std_logic;
-- signals Ive added for this refactoring
signal NumDataBuffered : std_logic_vector (6 downto 0); -- just used in init
signal ReadyToRead : std_logic; -- flag that buffer has at least a packets worth
signal writerambuff : std_logic_vector (2 downto 0); 
signal ScopeReadAddress : std_logic_vector (6 downto 0); -- to implement later, the raw data 



signal DataCountOut : std_logic_vector (6 downto 0); -- to track how much data sent out 

signal DataAbsReadAddr : std_logic_vector (6 downto 0); -- address used to fetch data from Ram
signal FFTinputStarted : std_logic; -- flag indicating that FFT is accepting data now
signal wraddress : std_logic_vector (6 downto 0);

-- signals pasted in from window
--type TableEntry is range 0 to 64;  --
type table64 is array (64 downto 0) of integer range 0 to 1024; 
signal HannTable : table64;
signal TableIndex : integer range 0 to 64; -- index is one more than it actually has to be 

  
signal result : integer;
signal interimresult : std_logic_vector (17 downto 0);
signal TheInput : integer;
signal Windowed_Data : std_logic_vector (7 downto 0);

-------------------------------
component SliceRam IS

PORT
(

clock : IN STD_LOGIC  := '1';
data : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
rdaddress : IN STD_LOGIC_VECTOR (6 DOWNTO 0);
wraddress : IN STD_LOGIC_VECTOR (6 DOWNTO 0);
wren : IN STD_LOGIC  := '0';
q : OUT STD_LOGIC_VECTOR (7 DOWNTO 0)

);
END component;

begin 

LocalReset <= nReset and DataGood;  --

----------------------------------------
----------------------------------------
--write to Ram here
----------------------------------------
----------------------------------------
-- Data clocked in on slow(er) Clock
DataIn : process (LocalReset,Clock1K)

begin
if (LocalReset ='0') then 

data <= "00000000";
wraddress <= "1111111";
ReadyToRead <='0';
NumDataBuffered <= "0000000";

   elsif (rising_edge (Clock1K))  then
data <= RawData;
wraddress <= wraddress + '1';
NumDataBuffered <= NumDataBuffered + '1';
if (NumDataBuffered > "1000001") then

ReadyToRead <= '1';
end if;

end if;
end process;

---------------------------------------
---------------------------------------
---------------------------------------
WriteRamClock : process (LocalReset,Clock1K,Clock50)
begin

if (LocalReset = '0') then
writerambuff <= "000";

elsif (rising_edge (Clock50)) then 
if ((Clock1K = '1') and (writerambuff < "100")) then

writerambuff <= writerambuff + '1';
else

writerambuff <="000";
end if;

end if;
end process;
-----------------------------------------
WriteToRam <= writerambuff(1); -- clock it in with this
-----------------------------------------
-----------------------------------------
-- and thats that for writing
-------------
-- now take care of read address and hann table index
ReadBuffAddress : process 



(LocalReset,Clock4K,FFTinputStarted,ReadyToRead,DataAbsReadAddr,DataCountOut)
begin

if (LocalReset = '0') then
DataAbsReadAddr <= "0000000";
DataCountOut <="0000000";

elsif ((Rising_edge(Clock4K)) and (FFTinputStarted = '1') and (ReadyToRead = '1')) then
DataAbsReadAddr <= DataAbsReadAddr + '1';
DataCountOut <= DataCountOut +'1';
if (DataCountOut = "0111111") then

DataAbsReadAddr <= DataAbsReadAddr - "0110000"; -- regress 48 points for 
'overlap'

DataCountOut <="0000000"; -- which can also be the index for the hann table!
end if;

end if;
end process;
----------------------------------
----------------------------------
 RamReadAddr : process (LocalReset,Clock4K,DataAbsReadAddr) 
 begin

if (LocalReset = '0') then
ReadAddress <= "0000000";

elsif (falling_edge (Clock4K)) then
ReadAddress <= DataAbsReadAddr;

end if;

end process;
------------------------------------
-------------------------------------
--window/hann function stuff
-----------------------------------------
-- Data clocked in and out on rising edge of
-- Clock4K, OUTSDIDE of the state machine
-------------------------------------------
init : process (nReset,Clock4K)

begin
if (nReset ='0') then 

Buffered_Data  <="00000000";
   elsif (rising_edge (Clock4K))  then

Buffered_Data  <=Windowed_Data;
end if;

end process;
------------------------------------------------------------------
DoWindow:process (nReset,Clock50,TheInput,HannTable,TableIndex)
begin

if (Rising_edge (Clock50)) then
FFTinputStarted <='1';
result <= TheInput*HannTable(TableIndex);

end if;
end process;
----------------------------------------------------------------
TableIndex <= to_integer(unsigned(DataCountOut));
TheInput <= to_integer(signed(q));
interimresult <= std_logic_vector(to_signed(result,18));
Windowed_Data <= interimresult(17 downto 10);
------------------------------------------------------------------
SliceRamInst : SliceRam 

PORT map
(

clock => Clock50,
data => data,
rdaddress =>ReadAddress,
wraddress =>wraddress,
wren => WriteToRam,
q =>q

);
----------------------------------------
--- Look Up Table for Hann Function ----
------------------------------------------
HannTable( 0 )<= 0 ;
HannTable( 1 )<= 2 ;
HannTable( 2 )<= 10 ;
HannTable( 3 )<= 22 ;
HannTable( 4 )<= 40 ;
HannTable( 5 )<= 62 ;
HannTable( 6 )<= 88 ;
HannTable( 7 )<= 119 ;
HannTable( 8 )<= 154 ;
HannTable( 9 )<= 192 ;
HannTable( 10 )<= 234 ;
HannTable( 11 )<= 278 ;
HannTable( 12 )<= 324 ;



HannTable( 13 )<= 373 ;
HannTable( 14 )<= 423 ;
HannTable( 15 )<= 473 ;
HannTable( 16 )<= 524 ;
HannTable( 17 )<= 575 ;
HannTable( 18 )<= 625 ;
HannTable( 19 )<= 675 ;
HannTable( 20 )<= 722 ;
HannTable( 21 )<= 768 ;
HannTable( 22 )<= 810 ;
HannTable( 23 )<= 850 ;
HannTable( 24 )<= 887 ;
HannTable( 25 )<= 920 ;
HannTable( 26 )<= 948 ;
HannTable( 27 )<= 973 ;
HannTable( 28 )<= 993 ;
HannTable( 29 )<= 1008 ;
HannTable( 30 )<= 1018 ;
HannTable( 31 )<= 1023 ;
HannTable( 32 )<= 1023 ;
HannTable( 33 )<= 1018 ;
HannTable( 34 )<= 1008 ;
HannTable( 35 )<= 993 ;
HannTable( 36 )<= 973 ;
HannTable( 37 )<= 948 ;
HannTable( 38 )<= 920 ;
HannTable( 39 )<= 887 ;
HannTable( 40 )<= 850 ;
HannTable( 41 )<= 810 ;
HannTable( 42 )<= 768 ;
HannTable( 43 )<= 722 ;
HannTable( 44 )<= 675 ;
HannTable( 45 )<= 625 ;
HannTable( 46 )<= 575 ;
HannTable( 47 )<= 524 ;
HannTable( 48 )<= 473 ;
HannTable( 49 )<= 423 ;
HannTable( 50 )<= 373 ;
HannTable( 51 )<= 324 ;
HannTable( 52 )<= 278 ;
HannTable( 53 )<= 234 ;
HannTable( 54 )<= 192 ;
HannTable( 55 )<= 154 ;
HannTable( 56 )<= 119 ;
HannTable( 57 )<= 88 ;
HannTable( 58 )<= 62 ;
HannTable( 59 )<= 40 ;
HannTable( 60 )<= 22 ;
HannTable( 61 )<= 10 ;
HannTable( 62 )<= 2 ;
HannTable( 63 )<= 0 ;
HannTable( 64 )<= 0 ;

end RTL;

Slice Ram

A 'quartus' generated file, not listed here for copyright reasons

Scope Ram
A 'quartus' generated file, not listed here for copyright reasons

Scope Display box



LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
LIBRARY ieee ;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all; 

entity ScopeDisplayBox is 

port (

Clock50 : in std_logic;
nReset : in std_logic;

-- the input data is addressed like this,
-- for easy 'face to math block
-- concated to plain  address later

ScopeAmplitude : in std_logic;
ScopeStrobe : in std_logic;  -- strobe the value in. might not be totally 

necessary
ScopeSweep : in std_logic;  -- probably only as an overide, should be 

automatic?
ScopeReset : in std_logic; -- as opposed to global, might use for 

pause/restart

-----------------------------------------------

-- interface to VGA - takes all the 
-- Hcount and Vcount that is thrown 
-- at it, but only returns data for relevant
-- area so is quite custom

Horizontal : in integer range 0 to 1023;  -- the same as the Hcount in block above
Vertical : in integer range 0 to 1023;   -- the same as Vcount in block above

-- dont forget, horizontal is actually counting the columns (timeslots)
-- and vertical the rows 

ScopeRedOut : out std_logic_vector (3 downto 0);
ScopeGreenOut : out std_logic_vector (3 downto 0);
ScopeBlueOut : out std_logic_vector (3 downto 0);
ScopeColourValid : out std_logic

);

end ScopeDisplayBox;

architecture RTL of ScopeDisplayBox is

signal Awraddress : std_logic_vector (14 downto 0);
signal Ardaddress : std_logic_vector (14 downto 0);

signal ScopeDispValid : std_logic;

--debug only--debug only--debug only
signal wrcount : std_logic_vector (15 downto 0);  --debug only

signal DisplayInit: std_logic;

signal ScopeDisplayValid : std_logic;

signal ScopeByte : std_logic_vector (0 downto 0);
signal ScopeVal : std_logic_vector (0 downto 0);
signal Scoperdaddress : std_logic_vector(14 downto 0);
signal Scopewraddress : std_logic_vector(14 downto 0);
signal ScopeWriteToRam : std_logic;

signal ScopeHorizontalInterim : integer range 0 to 1023; -- used to derive ram address from 
vga counts

signal ScopeVerticalInterim : integer range 0 to 1023;   -- used to derive ram address from 
vga counts

signal ScopeHorizontalVector : std_logic_vector (10 downto 0);--debug only
signal ScopeVerticalVector : std_logic_vector (10 downto 0);--debug only
signal ScopeScrollOffset : std_logic_vector(8 downto 0);



signal ScopeRamLowOrderAddress : std_logic_vector (8 downto 0);

signal ScopeRamHighOrderAddress : std_logic_vector (5 downto 0);

signal ScopeRamLowOrderAddressWr : std_logic_vector (8 downto 0);

signal ScopeRamHighOrderAddressWr : std_logic_vector (5 downto 0);

signal ScopeScrollEnable : std_logic;

component ScopeRam is 

PORT
(

clock : IN STD_LOGIC  := '1';
data : IN STD_LOGIC_VECTOR (0 DOWNTO 0);
rdaddress : IN STD_LOGIC_VECTOR (14 DOWNTO 0);
wraddress : IN STD_LOGIC_VECTOR (14 DOWNTO 0);
wren : IN STD_LOGIC  := '0';
q : OUT STD_LOGIC_VECTOR (0 DOWNTO 0)

);
END component;

begin
-- lash up test

process (nReset,Clock50,DisplayInit)

begin
if (nReset ='0') then 

wrcount <= X"0000";
elsif ((rising_edge (Clock50)) and (DisplayInit = '0')) then

wrcount <= wrcount+'1';
end if;

end process;

----------------------------------------------------

process (nReset,wrcount)
begin

if (nReset = '0') then
DisplayInit <= '0';

--elsif (wrcount = X"0010") then 
-- DisplayInit <= '1';

else DisplayInit <= '1';
end if;

end process;

----------------------------------------------------
process (nReset,ScopeStrobe,ScopeSweep) --point to the 'Y' co ordinat
begin

if ((nReset='0') or (ScopeSweep= '1')) then
ScopeRamHighOrderAddressWr <= "111111";  

elsif ((rising_edge(ScopeStrobe) and (DisplayInit='1') ))then
ScopeRamHighOrderAddressWr <= ScopeRamHighOrderAddressWr -'1';

end if;
end process;
-------------------------------------------

process (nReset,ScopeSweep)
begin

if (nReset='0')then
ScopeScrollOffset <= "000000000";
ScopeRamLowOrderAddressWr <= "111111111";

elsif (rising_edge (ScopeSweep)) then
if (ScopeScrollEnable = '1') then

ScopeScrollOffset <= ScopeScrollOffset +'1';
if ScopeScrollOffset = "111111110" then
 ScopeScrollOffset <="000000000";
end if;

end if;
ScopeRamLowOrderAddressWr <=ScopeRamLowOrderAddressWr + '1';

end if;
end process;

----------------------------------------------------------
process (nReset,Awraddress)



begin
if (nReset='0')then

ScopeScrollEnable<='0';
elsif (ScopeRamLowOrderAddressWr = "000000000") then

ScopeScrollEnable<='1';

end if;
end process;

Awraddress (14 downto 9) <= ScopeRamHighOrderAddressWr;
Awraddress (8 downto 0) <= ScopeRamLowOrderAddressWr;

process (nReset,wrcount,DisplayInit,Clock50)

begin
if 

(DisplayInit ='0') then
Scopewraddress <= wrcount(14 downto 0);
ScopeWriteToRam <= (not Clock50);
ScopeVal(0)<= '0';

else 
Scopewraddress <= Awraddress;
ScopeWriteToRam <= ScopeStrobe;
ScopeVal(0) <= ScopeAmplitude;  

end if;
end process;

process (nReset,Horizontal,Vertical)

begin

if (nReset = '0' ) then
ScopeDisplayValid <= '0';

 elsif (  ( (Horizontal > 64)and(Horizontal < 576 )) and ((Vertical >320) and (Vertical < 
384)) ) then

ScopeDisplayValid <= '1';
 else 

ScopeDisplayValid <= '0';
end if;

end process;

-- somehow get the data out

process (nReset,ScopeDisplayValid)

begin

if (nReset ='0') then

ScopeRedOut <= "0000";
ScopeGreenOut <= "0000";
ScopeBlueOut <= "0000";

else

if ( (ScopeDisplayValid = '1') and (DisplayInit ='1')) then

ScopeRedOut <= "0000";
ScopeGreenOut <= "0000";
ScopeBlueOut(3) <= ScopeByte(0);
ScopeBlueOut(2) <= ScopeByte(0);
ScopeBlueOut(1) <= ScopeByte(0);
ScopeBlueOut(0) <= ScopeByte(0);  -- bit lame, find out how to use 

'other'
else

ScopeRedOut <= "0000";
ScopeGreenOut <= "0000";
ScopeBlueOut <= "0000";

end if;
end if;

end process;

-- Scope only
ScopeHorizontalInterim <= Horizontal-64;--debug only



ScopeVerticalInterim <= Vertical-320;--debug only
ScopeHorizontalVector <=  std_logic_vector(to_unsigned(ScopeHorizontalInterim,11));--debug only
ScopeVerticalVector <=  std_logic_vector(to_unsigned(ScopeVerticalInterim,11));--debug only
Scoperdaddress(14 downto 9)<= ScopeVerticalVector(5 downto 0);
ScopeRamLowOrderAddress <= ScopeHorizontalVector(8 downto 0)+ ScopeScrollOffset;
Scoperdaddress (8 downto 0)<= ScopeRamLowOrderAddress ;

-- common interface 

--DisplayReady <= DisplayInit;

SourceMon : ScopeRam

PORT MAP 
(

clock  => Clock50,
data  => ScopeVal,  -- put this back when finished
rdaddress=>Scoperdaddress,
wraddress=>Scopewraddress,
wren  => ScopeWriteToRam,
q  => ScopeByte

);

ScopeColourValid <=  ScopeDisplayValid;

end RTL;

Spectrum Display box

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
LIBRARY ieee ;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all; 

entity SpectrumDisplayBox is 

port (

Clock50 : in std_logic;
nReset : in std_logic;

-- the input data is addressed like this,
-- for easy 'face to math block
-- concated to plain  address later

-- system interface
SpecAmplitude : in std_logic_vector (7 downto 0);
SpecStrobe : in  std_logic;  -- strobe the value in. might not be totally necessary
SpecSweep : in  std_logic;  -- probably only as an overide, should be automatic?
SpecReset : in  std_logic; -- as opposed to global, might use for pause/restart

-----------------------------------------------

-- interface to VGA - takes all the 
-- Hcount and Vcount that is thrown 
-- at it, but only returns data for relevant
-- area so is quite custom

Horizontal : in integer range 0 to 1023;  -- the same as the Hcount in block above
Vertical : in integer range 0 to 1023;   -- the same as Vcount in block above

-- dont forget, horizontal is actually counting the columns (timeslots)
-- and vertical the rows 

SpecRedOut : out std_logic_vector (3 downto 0);
SpecGreenOut : out std_logic_vector (3 downto 0);



SpecBlueOut : out std_logic_vector (3 downto 0);
SpecColourValid : out std_logic

);

end SpectrumDisplayBox;

architecture RTL of SpectrumDisplayBox is

signal Awraddress : std_logic_vector (12 downto 0);

--debug only--debug only--debug only
signal wrcount : std_logic_vector (15 downto 0);  --debug only

signal DisplayInit: std_logic;

signal SpecDisplayValid : std_logic;

signal SpecByte : std_logic_vector (7 downto 0);
signal SpecVal : std_logic_vector (7 downto 0);
signal Specrdaddress : std_logic_vector(12 downto 0);
signal Specwraddress : std_logic_vector(12 downto 0);
signal SpecWriteToRam : std_logic;

signal SpecHorizontalInterim : integer range 0 to 1023; -- used to derive ram address from 
vga counts

signal SpecVerticalInterim : integer range 0 to 1023;   -- used to derive ram address from 
vga counts

signal SpecHorizontalVector : std_logic_vector (10 downto 0);--debug only
signal SpecVerticalVector : std_logic_vector (10 downto 0);--debug only
signal SpecScrollOffset : std_logic_vector(8 downto 0);
signal SpecRamLowOrderAddress : std_logic_vector (8 downto 0);

signal SpecRamHighOrderAddress : std_logic_vector (4 downto 0);

signal SpecRamLowOrderAddressWr : std_logic_vector (7 downto 0);

signal SpecRamHighOrderAddressWr : std_logic_vector (4 downto 0);

signal SpecScrollEnable : std_logic;

component DisplayRam is 

PORT
(

clock : IN STD_LOGIC  := '1';
data : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
rdaddress : IN STD_LOGIC_VECTOR (12 DOWNTO 0);
wraddress : IN STD_LOGIC_VECTOR (12 DOWNTO 0);
wren : IN STD_LOGIC  := '0';
q : OUT STD_LOGIC_VECTOR (7 DOWNTO 0)

);
END component;

begin
-- lash up test

process (nReset,Clock50,DisplayInit)

begin
if (nReset ='0') then 

wrcount <= X"0000";
elsif ((rising_edge (Clock50)) and (DisplayInit = '0')) then

wrcount <= wrcount+'1';
end if;



end process;

----------------------------------------------------

process (nReset,wrcount)
begin

if (nReset = '0') then
DisplayInit <= '0';
else DisplayInit <= '1';

end if;
end process;
-----------------------------------------------

------------------------------------------------------
process (nReset,SpecStrobe,SpecSweep) --point to the 'Y' co ordinat
begin

if ((nReset='0') or (SpecSweep= '1')) then
SpecRamHighOrderAddressWr <= "11111";  

elsif ((rising_edge(SpecStrobe) and (DisplayInit='1') ))then
SpecRamHighOrderAddressWr <= SpecRamHighOrderAddressWr +'1';

end if;
end process;
---------------------------------------------

process (nReset,SpecSweep)
begin

if (nReset='0')then
SpecScrollOffset <= "000000000";

SpecRamLowOrderAddressWr <= X"FF";
elsif (rising_edge (SpecSweep)) then

if (SpecScrollEnable = '1') then
SpecScrollOffset <= SpecScrollOffset +'1';

if SpecScrollOffset = "111111111" then
SpecScrollOffset <="000000000";

end if;
end if;
SpecRamLowOrderAddressWr <=SpecRamLowOrderAddressWr + '1';

end if;
end process;
------------------------------------
------------------------------------

process (nReset,SpecRamLowOrderAddressWr)
begin

if (nReset='0')then
SpecScrollEnable<='0';

elsif (SpecRamLowOrderAddressWr = "00000000") then
SpecScrollEnable<='1';

end if;
end process;

Awraddress (12 downto 8) <= SpecRamHighOrderAddressWr(4 downto 0);
Awraddress (7 downto 0) <= SpecRamLowOrderAddressWr(7 downto 0);

process (nReset,DisplayInit,Clock50,SpecStrobe)

begin
if 

(DisplayInit ='0') then
Specwraddress <= wrcount(12 downto 0);
SpecWriteToRam <= (not Clock50);
SpecVal<= "00000000";

else 
Specwraddress <= Awraddress;
SpecWriteToRam <= SpecStrobe;
SpecVal(7 downto 0) <= SpecAmplitude;  

end if;
end process;

process (nReset,Horizontal,Vertical)

begin

if (nReset = '0' ) then
SpecDisplayValid <= '0';



 elsif (  ( (Horizontal > 64)and(Horizontal < 576 )) and ((Vertical >20) and (Vertical < 
276)) ) then

SpecDisplayValid <= '1';
 else 

SpecDisplayValid <= '0';
end if;

end process;

-- somehow get the data out

process (nReset,SpecDisplayValid,SpecByte,DisplayInit)

begin

if (nReset ='0') then

SpecRedOut <= "0000";
SpecGreenOut <= "0000";
SpecBlueOut <= "0000";

else

if ( (SpecDisplayValid = '1') and (DisplayInit ='1')) then

SpecRedOut(3 downto 0) <= SpecByte (7 downto 4);
SpecGreenOut(3 downto 0) <= SpecByte (7 downto 4);
SpecBlueOut(3 downto 0)<=  SpecByte (7 downto 4);-- bit lame, find out 

how to use 'other'
else

SpecRedOut <= "0000";
SpecGreenOut <= "0000";
SpecBlueOut <= "0000";

end if;
end if;

end process;

--my_slv <= std_logic_vector(to_unsigned(my_integer, my_slv'length)); -- if 

-- Spec only
SpecHorizontalInterim <= Horizontal-64;--debug only
SpecVerticalInterim <= Vertical-20;--debug only

SpecHorizontalVector <=  std_logic_vector(to_unsigned(SpecHorizontalInterim,11));--debug only
SpecVerticalVector <=  std_logic_vector(to_unsigned(SpecVerticalInterim,11));--debug only

Specrdaddress(12 downto 8)<= SpecVerticalVector(7 downto 3);
SpecRamLowOrderAddress <= SpecHorizontalVector(8 downto 0);--+ SpecScrollOffset ;
Specrdaddress (7 downto 0)<= SpecRamLowOrderAddress(8 downto 1)+ SpecScrollOffset (7 downto 0);

SpecColourValid <= SpecDisplayValid;

-- instantiate spectrogram d
SpectRam : DisplayRam

PORT MAP 
(

clock  => Clock50,
data  => SpecVal,  
rdaddress=>Specrdaddress ,
wraddress=>Specwraddress,
wren  => SpecWriteToRam,
q  => SpecByte

);

end RTL;



VGA  block

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
LIBRARY ieee ;
use ieee.std_logic_unsigned.all;

entity Vgablock is

port (
Clock50 : in std_logic;  -- might get a faster ext clock later!
clock27 : in std_logic;
nReset : in std_logic;

H_Sync  : out std_logic;
V_Sync : out std_logic;
RedOut : out std_logic_vector(3 downto 0);
GreenOut : out std_logic_vector(3 downto 0);
BlueOut : out std_logic_vector(3 downto 0);

-- system interface
SpecAmplitude : in std_logic_vector (7 downto 0);

SpecStrobe : in  std_logic;  -- strobe the value in. might not be totally 
necessary

SpecSweep : in  std_logic;  -- probably only as an overide, should be 
automatic?

SpecReset : in  std_logic; -- as opposed to global, might use for 
pause/restart

--Scope
ScopeAmplitude : in std_logic;
ScopeStrobe : in std_logic;  -- strobe the value in. might not be totally 

necessary
ScopeSweep : in std_logic;  -- probably only as an overide, should be 

automatic?
ScopeReset : in std_logic -- as opposed to global, might use for 

pause/restart

);

end Vgablock;

architecture RTL of Vgablock is

signal HorCount : integer range 0 to 1023; 
signal VertCount : integer range 0 to 1023; 

--signal FreqSlot : std_logic_vector (4 downto 0);
--signal Amplitude : std_logic_vector (7 downto 0);
--signal Strobe :std_logic;  -- strobe the value in. might not be totally necessary
--signal ColumnDone :  std_logic;  -- probably only as an overide, should be automatic?
--signal ResetDisplay :  std_logic; -- as opposed to global, might use for pause/restart

-- interface to display 
signal FreqBin : std_logic_vector (4 downto 0);
--signal TimeSlot:std_logic_vector (7 downto 0);
signal Power : std_logic_vector (7 downto 0);
signal WritePower : std_logic;
signal DisplayReady : std_logic;

signal SpecRedOut : std_logic_vector (3 downto 0);
signal SpecGreenOut :  std_logic_vector (3 downto 0);
signal SpecBlueOut : std_logic_vector (3 downto 0);
signal SpecColourValid : std_logic;

signal ScopeRedOut : std_logic_vector (3 downto 0);
signal ScopeGreenOut : std_logic_vector (3 downto 0);
signal ScopeBlueOut: std_logic_vector (3 downto 0);
signal ScopeColourValid : std_logic;
--signal Scroll : std_logic;



component VgaCountersAndMux is 

port 

(
Clock50 : in std_logic;  -- might get a faster ext clock later!
clock27 : in std_logic;
nReset : in std_logic;

SpecMux : in std_logic;
ScopeMux : in std_logic;

SpecRedOut : in std_logic_vector (3 downto 0);
SpecGreenOut :in  std_logic_vector (3 downto 0);
SpecBlueOut : in std_logic_vector (3 downto 0);

ScopeRedOut : in std_logic_vector (3 downto 0);
ScopeGreenOut :in  std_logic_vector (3 downto 0);
ScopeBlueOut : in std_logic_vector (3 downto 0);

H_Sync  : out std_logic;
V_Sync : out std_logic;

HorCount : out integer range 0 to 1023; 
      VertCount : out integer range 0 to 1023; 

RedOut : out std_logic_vector(3 downto 0);
GreenOut : out std_logic_vector(3 downto 0);
BlueOut : out std_logic_vector(3 downto 0)

);
end component;

component SpectrumDisplayBox is 
    port (

Clock50 : in std_logic;
nReset : in std_logic;

-- the input data is addressed like this,
-- for easy 'face to math block
-- concated to plain  address later

SpecAmplitude : in std_logic_vector (7 downto 0);
SpecStrobe : in  std_logic;  -- strobe the value in. might not be totally necessary
SpecSweep : in  std_logic;  -- probably only as an overide, should be automatic?
SpecReset : in  std_logic; -- as opposed to global, might use for pause/restart

-----------------------------------------------
-- interface to VGA - takes all the 
-- Hcount and Vcount that is thrown 
-- at it, but only returns data for relevant
-- area so is quite custom

   Horizontal : in integer range 0 to 1023;  -- the same as the Hcount in block above
   Vertical : in integer range 0 to 1023;   -- the same as Vcount in block above

-- dont forget, horizontal is actually counting the columns (timeslots)
-- and vertical the rows 

SpecRedOut : out std_logic_vector (3 downto 0);
SpecGreenOut : out std_logic_vector (3 downto 0);

   SpecBlueOut : out std_logic_vector (3 downto 0);

SpecColourValid : out std_logic
);

end component;

component ScopeDisplayBox is 

port (

   Clock50 : in std_logic;
nReset : in std_logic;

-- the input data is addressed like this,
-- for easy 'face to math block
-- concated to plain  address later

ScopeAmplitude : in std_logic;
ScopeStrobe : in std_logic;  -- strobe the value in. might not be totally 

necessary
ScopeSweep : in std_logic;  -- probably only as an overide, should be 



automatic?
ScopeReset : in std_logic; -- as opposed to global, might use for 

pause/restart

-----------------------------------------------

-- interface to VGA - takes all the 
-- Hcount and Vcount that is thrown 
-- at it, but only returns data for relevant
-- area so is quite custom

Horizontal : in integer range 0 to 1023;  -- the same as the Hcount in block above
Vertical : in integer range 0 to 1023;   -- the same as Vcount in block above

-- dont forget, horizontal is actually counting the columns (timeslots)
-- and vertical the rows 

ScopeRedOut : out std_logic_vector (3 downto 0);
ScopeGreenOut : out std_logic_vector (3 downto 0);
ScopeBlueOut : out std_logic_vector (3 downto 0);
ScopeColourValid : out std_logic

);

end component;

begin

--display memory container
SpecBox : SpectrumDisplayBox

port map
(
Clock50 => Clock50  ,
nReset => nReset ,

-- the input data is addressed like this,
-- for easy 'face to math block
-- concated to plain  address later
SpecAmplitude => SpecAmplitude,

SpecStrobe => SpecStrobe,
SpecSweep => SpecSweep,
SpecReset => SpecReset,

-----------------------------------------------
-- interface to VGA - takes all the 
-- Hcount and Vcount that is thrown 
-- at it, but only returns data for relevant
-- area so is quite custom

Horizontal => HorCount ,
Vertical => VertCount ,

SpecRedOut =>SpecRedOut  ,
SpecGreenOut =>SpecGreenOut  ,

   SpecBlueOut => SpecBlueOut ,

SpecColourValid => SpecColourValid 
);

ScopeBox : ScopeDisplayBox

port map

(
Clock50 => Clock50,
nReset => nReset,

ScopeAmplitude => ScopeAmplitude,
ScopeStrobe => ScopeStrobe,  -- strobe the value in. might not be totally necessary
ScopeSweep => ScopeSweep,  -- probably only as an overide, should be automatic?
ScopeReset =>ScopeReset , -- as opposed to global, might use for pause/restart

Horizontal => HorCount,  -- the same as the Hcount in block above
Vertical => VertCount,   -- the same as Vcount in block above

ScopeRedOut => ScopeRedOut,
ScopeGreenOut => ScopeGreenOut,
ScopeBlueOut => ScopeBlueOut,



ScopeColourValid => ScopeColourValid 

);

-- VGA clocks and o/p mux
VgaClocks : VgaCountersAndMux 

port map 
(

Clock50 => Clock50,
clock27 => clock27 ,
nReset => nReset,

SpecMux => SpecColourValid ,
ScopeMux => ScopeColourValid,

SpecRedOut => SpecRedOut,
SpecGreenOut => SpecGreenOut,
SpecBlueOut =>SpecBlueOut ,

ScopeRedOut => ScopeRedOut,
ScopeGreenOut => ScopeGreenOut,
ScopeBlueOut => ScopeBlueOut,

H_Sync  => H_Sync ,
V_Sync => V_Sync,

HorCount => HorCount,
      VertCount => VertCount,

RedOut => RedOut,
GreenOut => GreenOut,
BlueOut => BlueOut

);

end RTL;

VGA Counters and Mux

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
LIBRARY ieee ;
use ieee.std_logic_unsigned.all;

entity VgaCountersAndMux is 
port 
(

Clock50 : in std_logic;  -- might get a faster ext clock later!
clock27 : in std_logic;
nReset : in std_logic;

SpecMux : in std_logic;
ScopeMux : in std_logic;

SpecRedOut : in std_logic_vector (3 downto 0);
SpecGreenOut :in  std_logic_vector (3 downto 0);
SpecBlueOut : in std_logic_vector (3 downto 0);

ScopeRedOut : in std_logic_vector (3 downto 0);
ScopeGreenOut :in  std_logic_vector (3 downto 0);
ScopeBlueOut : in std_logic_vector (3 downto 0);

H_Sync  : out std_logic;
V_Sync : out std_logic;

HorCount : out integer range 0 to 1023; 
      VertCount : out integer range 0 to 1023; 

RedOut : out std_logic_vector(3 downto 0);
GreenOut : out std_logic_vector(3 downto 0);
BlueOut : out std_logic_vector(3 downto 0)



);

end VgaCountersAndMux;

architecture RTL of VgaCountersAndMux is

signal VGAClock : std_logic;
signal Hcount :  integer range 0 to 1023; 
signal Vcount :  integer range 0 to 1023; 

component VGAPLL IS
PORT
(

inclk0 : IN STD_LOGIC;
c0 : OUT STD_LOGIC 

);
END component;

begin

HorCount <= Hcount;
VertCount <= Vcount;
--horizontal count process
process (nReset,VGAClock)

begin
if (nReset = '0') then
Hcount <= 0;
Vcount <= 0;

elsif (rising_edge (VGAClock)) then
Hcount <= Hcount+ 1;

if Hcount = 799 then
Vcount <= Vcount+1;
Hcount <= 0;

else
if ((Vcount >= 525) and (Hcount >= 756)) then

Vcount <= 0;
end if;

end if;
end if;

end process;
-- end H count process

-- H synch process
process (nReset,Hcount)

begin

if (nReset = '0') then
H_Sync <= '1';

else

if ((Hcount >= 661) and (Hcount<= 756)) then
H_Sync <= '0';

else
H_Sync <= '1';

end if;

end if;

end process;

--vertical count process

-- process for Vert synch
process (nReset,Vcount)

begin

if (nReset = '0') then
V_Sync <= '1';

else



if ((Vcount >= 491) and (Vcount <= 492)) then
V_Sync <= '0';

else
V_Sync <= '1';

end if;
end if;

end process;

-- route the colours

process (nReset,SpecMux,ScopeMux)
begin

if (nReset = '0') then
RedOut <= "0000"; 
GreenOut  <= "0000";
BlueOut  <= "0000";

elsif (SpecMux = '1' ) then
RedOut <= SpecRedOut; 
GreenOut  <= SpecGreenOut;
BlueOut  <= SpecBlueOut;

elsif (ScopeMux = '1' ) then
RedOut <= ScopeRedOut; 
GreenOut  <= ScopeGreenOut;
BlueOut  <= ScopeBlueOut;

else
if (Hcount < 640 and Vcount < 480 ) then
RedOut <= "0000"; 
GreenOut  <= "1111";
BlueOut  <= "0000";

else 
RedOut <= "0000"; 
GreenOut  <= "0000";
BlueOut  <= "0000";

end if;
end if;

end process;

-----
-- 

----
-- vga pll instance
 TheVgaClock : VGAPLL

port map 
(

inclk0 => clock27,
c0 => VGAClock

);
---------------------

end RTL;

VGA PLL

A 'quartus' generated file, not listed here for copyright reasons

Window



library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity window is 

port (

Clock50 : in std_logic;  -- might get a faster ext clock later!
nReset : in std_logic;
Clock4K : in std_logic;  --sample clock
Buffered_ECG : IN STD_LOGIC_VECTOR (7 DOWNTO 0); -- 
sink_eop : in std_logic; -- informing FFT is end of packet, and here 

to reset window index

Windowed_ECG : out std_logic_vector (7 downto 0)  -- the data after 
window applied

);

end window;

architecture RTL of window is

begin 

-----------------------------------------
-- Data clocked in and out on rising edge of
-- Clock4K, OUTSDIDE of the state machine
-------------------------------------------
init : process (nReset,Clock4K)

begin
if (nReset ='0') then 

TheInput <= 0;
Windowed_ECG  <="00000000";
TableIndex <= 0;

   elsif (rising_edge (Clock4K))  then
TheInput <= to_integer(signed(Buffered_ECG));
Windowed_ECG <= interimresult(17 downto 10);
--resultlv <= std_logic_vector(to_signed(result,22));

if (sink_eop = '1') then
TableIndex <= 0;

else 
TableIndex <= TableIndex+1;

end if;
if TableIndex>63 then

TableIndex<=0;
end if;

end if;
end process;

DoWindow:process (nReset,Clock4K)
begin

if (falling_edge (Clock4K)) then
result <= TheInput*HannTable(TableIndex);

end if;

end process;

interimresult <= std_logic_vector(to_signed(result,18));

----------------------------------------------------------
--- Look Up Table for Hann Function ----
------------------------------------------
HannTable( 0 )<= 0 ;
HannTable( 1 )<= 2 ;
HannTable( 2 )<= 10 ;
HannTable( 3 )<= 22 ;
HannTable( 4 )<= 40 ;
HannTable( 5 )<= 62 ;
HannTable( 6 )<= 88 ;
HannTable( 7 )<= 119 ;
HannTable( 8 )<= 154 ;
HannTable( 9 )<= 192 ;
HannTable( 10 )<= 234 ;



HannTable( 11 )<= 278 ;
HannTable( 12 )<= 324 ;
HannTable( 13 )<= 373 ;
HannTable( 14 )<= 423 ;
HannTable( 15 )<= 473 ;
HannTable( 16 )<= 524 ;
HannTable( 17 )<= 575 ;
HannTable( 18 )<= 625 ;
HannTable( 19 )<= 675 ;
HannTable( 20 )<= 722 ;
HannTable( 21 )<= 768 ;
HannTable( 22 )<= 810 ;
HannTable( 23 )<= 850 ;
HannTable( 24 )<= 887 ;
HannTable( 25 )<= 920 ;
HannTable( 26 )<= 948 ;
HannTable( 27 )<= 973 ;
HannTable( 28 )<= 993 ;
HannTable( 29 )<= 1008 ;
HannTable( 30 )<= 1018 ;
HannTable( 31 )<= 1023 ;
HannTable( 32 )<= 1023 ;
HannTable( 33 )<= 1018 ;
HannTable( 34 )<= 1008 ;
HannTable( 35 )<= 993 ;
HannTable( 36 )<= 973 ;
HannTable( 37 )<= 948 ;
HannTable( 38 )<= 920 ;
HannTable( 39 )<= 887 ;
HannTable( 40 )<= 850 ;
HannTable( 41 )<= 810 ;
HannTable( 42 )<= 768 ;
HannTable( 43 )<= 722 ;
HannTable( 44 )<= 675 ;
HannTable( 45 )<= 625 ;
HannTable( 46 )<= 575 ;
HannTable( 47 )<= 524 ;
HannTable( 48 )<= 473 ;
HannTable( 49 )<= 423 ;
HannTable( 50 )<= 373 ;
HannTable( 51 )<= 324 ;
HannTable( 52 )<= 278 ;
HannTable( 53 )<= 234 ;
HannTable( 54 )<= 192 ;
HannTable( 55 )<= 154 ;
HannTable( 56 )<= 119 ;
HannTable( 57 )<= 88 ;
HannTable( 58 )<= 62 ;
HannTable( 59 )<= 40 ;
HannTable( 60 )<= 22 ;
HannTable( 61 )<= 10 ;
HannTable( 62 )<= 2 ;
HannTable( 63 )<= 0 ;
HannTable( 64 )<= 0 ;

end RTL;


